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Asymptotic laws and preasymptotic correction formulas for the relaxation
near glass-transition singularities

T. Franosch, M. Fuchs, W. Go¨tze, M. R. Mayr, and A. P. Singh
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 30 December 1996!

Within the mode-coupling theory~MCT! for the dynamics of simple liquids, the leading corrections to the
asymptotic solutions for the relaxation in the vicinity of an ideal glass transition are derived. The formulas are
used to determine the range of validity of the scaling-law description of the MCT results for thea andb
processes in glass-forming systems. Solutions of the MCT equations of motion are calculated for a hard-sphere
colloidal suspension model and compared with the derived analytical results. The leading-order formulas are
shown to describe the major qualitative features of the bifurcation scenario near the transition and the leading-
plus-next-to-leading-order formulas are demonstrated to give a quantitative description of the evolution of
structural relaxation for the model.@S1063-651X~97!06005-4#

PACS number~s!: 64.70.Pf, 61.20.Lc
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I. INTRODUCTION

Glass-forming liquids develop structural-relaxation d
namics if they are cooled or compressed@1#. An outstanding
feature of this relaxation is the stretching of decay functio
F over large windows of timet, or equivalently, the stretch
ing of spectra over huge windows of frequencyv. Further-
more, the characteristic time scalest for the dynamics can
shift over several orders of magnitude if the temperatureT or
the particle densityn are altered by, say, 20%. The stron
sensitivity of the scalest on T or n is the origin of the glass
transition at some temperatureTg or densityng , i.e., for the
crossover from an equilibrium liquid to some nonequilibriu
amorphous solid. Stretching was first reported by Kohlrau
@2# who described his dielectric relaxation data by the fu
tionF(t)}exp2(t/t)b, b,1. von Schweidler@3# commented
upon the fact, that certain parts of dielectric loss spectra v
according to the power lawx9(v)}1/(vt)b, b,1, if v is
shifted over two to three decades. Another fit formula
stretched susceptibilities was proposed by Cole and Cole@4#:
x(v)}1/@11(2 ivt)a], a,1. It is an important issue o
condensed matter physics to provide an understandin
structural-relaxation processes, in particular, of the m
tioned anomalous exponents.

During recent years, the mode-coupling theory~MCT! has
been developed as a model for the dynamics of strongly
teracting disordered matter. MCT models are based
closed nonlinear integrodifferential equations for a set of c
relation functions. The equations are regular, i.e., they
pend smoothly on system parameters likeT and n; no as-
sumptions on anomalous exponents, transitions or s
relaxations are built into the starting equations of the theo
The MCT yields the cited Kohlrausch formula@5#, the von
Schweidler function@6,7#, and the Cole-Cole susceptibilit
@8# as a description of their solutions in precisely defin
asymptotic limits. Furthermore, MCT predicted a critic
spectrumx9(v)}va,0,a,0.5, which was experimentally
detected in, for example, the molten salt Ca(NO3)2KNO3
~CKN! @9–11#, the associated liquid glycerol@12–14#, the
covalently bonded system B2O3 @15#, and in colloidal sus-
551063-651X/97/55~6!/7153~24!/$10.00
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pensions @16–21#. These mathematical and experimen
findings appear as a justification to consider the MCT a
candidate for a theory of structural relaxation.

Originally, the MCT was proposed as a schematic tre
ment of glass transitions@22#, as an approximation theory fo
the cage effect in simple liquids@23#, and as a self-consisten
one-loop approximation for a fluctuating-hydrodynami
model @24#. The new findings of the MCT result from
bifurcation singularity, which leads to an unconventional d
namics. Upon loweringT or increasingn, the system is
driven towards and past this singularity. Thereby, a scen
for the evolution of structural relaxation is obtained. For co
ventional glass-forming systems, the MCT predicts th
structural-relaxation spectra evolve within the GHz ban
This dynamical window is below the one studied for norm
liquid motion but considerably above the window analyz
in the classical glass-transition research@1#. The GHz win-
dow became accessible only in recent years due to the in
tion of new spectrometers. The first complete documenta
of the evolution of structural relaxation was obtained by
et al. @11# for CKN and by van Megen and Underwoo
@19,20# for a colloidal suspension. The former measur
spectra as a function of temperature by depolarized li
scattering, and the latter determined density fluctuation
cay curves for various densities by photon correlation sp
troscopy. The reported spectra and decay curves are s
ingly similar to the corresponding results of MCT mode
This observation was corroborated@11,19,20# by detailed
quantitative comparisons of the data with MCT formulas.

A variety of techniques has been used to explore the
namics in windows relevant for a test of the MCT
bifurcation predictions. Correlation functionsF(t) have
been measured by neutron-spin-echo spectroscopy@25#, by
stimulated Brillouin scattering@26#, or by transient hole
burning @27#. Computer simulations also yieldF(t) as pri-
mary output, and recently Monte Carlo studies@28# and
molecular-dynamics work@29,30# could be extended to suc
long times, that they can deal with the same windows
achieved by the mentioned modern experiments. Inelas
light scattering for frequencies between 0.1 GHz and
7153 © 1997 The American Physical Society
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THz, pioneered by Cummins and co-workers@10–12,31,32#,
provides correlation spectraF9(v). So does inelastic neu
tron scattering, where great efforts have been made to ex
the dynamical window to such sizes that the data beco
informative for glass-transition studies. This can be infer
from Refs.@9,13,33#, to mention some particularly interes
ing examples. Dielectric loss studies deliver susceptibi
spectrax9(v), and this technique can now also be used
the GHz band@34,35#. Structural relaxation and the glas
transition have also been studied for colloidal suspens
@16,18–21#. These systems are of particular relevance
tests of theories, because of the simplicity of their structu
From the cited papers one can infer that the MCT prope
describes some features of the evolution of structural re
ation for some glass-forming systems; and this appears
motivation to continue studies of the theory.

The MCT equations of motion are complicated and m
of the theoretical work deals with attempts to understand
properties of their solutions. Up to now, leading-ord
asymptotic solutions have been worked out for parame
near the mentioned bifurcation singularity. This work, r
viewed to a large extent in Refs.@36–38#, established some
universal features of the bifurcation scenario, and produc
series of handy formulas such as scaling laws. In princi
these formulas imply a series of relations between mea
able quantities. It was suggested to use these results
general basis for an assessment of the theory by experim
tests. Indeed, quite a number of papers have been publi
dealing with a comparison of experimental findings w
leading-order asymptotic MCT results, which are partly
viewed in Refs.@37–39#. Recent work on the comparison o
MCT results with light-scattering studies for convention
systems are reviewed in Refs.@40–42#, on colloids in Refs.
@43,44#, on neutron scattering in Ref.@45#, and on computer
simulations in Refs.@46–48#. In any experimental situation
the MCT analysis of the data is complicated by the fact, t
there is no way to knowa priori what the range of validity of
the leading-order expansions should be. Therefore, i
timely to present a discussion of the asymptotic correctio
which lead to deviations from the widely used leading-ord
scaling laws.

The main aim of the present paper is the derivation of
next-to-leading corrections to the known, asymptotic res
of the MCT. With these new results estimates of the rang
validity of the leading asymptotic results become possib
For this second undertaking it is informative to compare
leading asymptotic results to numerical solutions of the M
equations for a relevant model. Therefore, another goa
this paper is a comprehensive comparison of the lead
asymptotic results with the MCT solutions for a liqu
model. Thereto, in Sec. II, the MCT equations of motion
density fluctuations in simple liquids are specialized to
hard-sphere liquid model. The numerical solutions of t
model serve as a basis for quantitative demonstrations o
analytical results. Section III presents the bifurcation in
equations for the long-time limits. Section IV introduc
some concepts for the description of the bifurcation dyna
ics, and Sec. V discusses the two fractal power laws in ti
which are the origin of the stretched decay in MCT. In S
VI the first scaling law is presented, which describes
relaxation in an intermediate time window. For longer tim
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a second scaling law describes the final relaxation into
liquid equilibrium, as shown in Sec. VII. We discuss th
various qualitative trends of the deviations from the lead
results. The analytical results for leading-plus-next-
leading expansions will also be compared with the m
tioned solutions for the hard-sphere liquid model. The n
results extend the range of validity of the old ones and p
vide a rather complete description of the bifurcation scena
for the model under discussion. Thus, the purpose of
paper is to establish an improved qualitative understand
of the MCT, to broaden the basis for experimental tests
the theory, and to deliver a set of reference results for fut
studies of other models.

II. A MODE-COUPLING THEORY MODEL

A. The general equations of motion

The basic version of the MCT deals with the dynamics
M functions of time t, denoted byFq(t), q51, . . . ,M .
These functions obey the initial condition
Fq(0)51,] tFq(0)50, and their time evolution is deter
mined byM equations of motion

] t
2Fq~ t !1Vq

2Fq~ t !1E
0

t

@Mq
reg~ t2t8!

1Vq
2mq~ t2t8!#] t8Fq~ t8! dt850 . ~1!

The model is specified by characteristic frequenciesVq.0,
by regular relaxation kernelsMq

reg(t), and by mode-coupling
kernelsmq(t). The latter are functionsFq of theM variables
Fq(t)

mq~ t !5Fq„F~ t !… . ~2!

TheseFq , which are called the mode-coupling functiona
are assumed to be absolutely monotone:Fq( f ), as well as all
its derivatives, are non-negative forf q>0. The functionals
Fq( f ) depend smoothly on control parameters such asT or
n. The Vq andMq

reg(t) specify the transient dynamics; i
particular, one gets Fq(t)512(Vqt)

2/21O(t4), if
Mq

reg(t) is continuous int. The interesting features of th
MCT result from the interplay of nonlinearities, which a
quantified by the kernelsmq(t), with retardation phenomena
formulated by the convolution integral in Eq.~1!.

In this paper the transient dynamics shall be simplified
two specializations. First, a Markovian model is used for
regular kernel:Mq

reg(t)5nqd(t20) ,nq.0. Second, the
friction constantsnq are assumed so large, that the iner
terms can be neglected. As a result, the generalized oscil
equations~1! are specialized to generalized relaxator eq
tions

tq] tFq~ t !1Fq~ t !1E
0

t

mq~ t2t8!] t8Fq~ t8! dt850 . ~3!

The transient dynamics is now quantified by the time co
stantstq5nq /Vq

2 . The initial conditions for the relaxato
model have to be restricted toFq(0)51. The relaxators ex-



-

a

at
-
s
io

e

-

tio
bil

i-
on
s

ng
lu
re
he

f

rr-
l

y
to
ts

ge
rt-
in

ard
d
on
he

fric-

ons

i-

of

he

the

ady

nd
ctor

om-
eed
his

s
ith-
-
cts
be-
or

55 7155ASYMPTOTIC LAWS AND PREASYMPTOTIC . . .
hibit the short-time asymptotes:Fq(t)512(t/tq)1O(t2).
For vanishing kernels,mq50, the solutions describe un
coupled Debye relaxation processes:Fq

(0)(t)5exp(2t/tq).
One can show the following@49#: Eqs. ~2!, ~3! define a

unique solution. The solution is regular in the sense that
M functionsFq(t) depend smoothly ontq and on smooth
variations ofFq on any finite time interval. This means th
the model is well defined; noad hocassumptions on singu
larities or glassy relaxations are made. Furthermore, the
lutions can be written as superposition of Debye relaxat
functions

Fq~ t !5E
0

`

e2gtd%q~g! , ~4!

where%q(g) is an increasing weight function. The Laplac
transforms Fq(z)5L@Fq(t)#(z) exist for complex fre-
quencies z,Im z.0. We use the conventionL@ f (t)#(z)
5i*0

`exp(izt) f (t) dt. For real frequenciesv, one obtains
with z5v1 i0:Fq(z)5Fq8(v)1 iFq9(v), where Fq8(v)5
*0

`cos(vt)Fq(t) dt.0. The solutionsFq(t) have the proper-
ties of autocorrelation functions@50#, and are therefore re
ferred to as correlators. TheFq9(v) are called correlation
spectra. In classical mechanics one can prove the fluctua
dissipation theorem which connects dynamical suscepti
ties xq(v) and correlators@50#. We use the convention
xq(v)5zFq(z)11 to definexq(v). In particular, the sus-
ceptibility spectra are given byxq9(v)5vFq9(v).

B. A hard-sphere model

An important quantity within the theory of simple class
cal N-particle liquids is the intermediate scattering functi
Fq(t), i.e., the correlator for density fluctuation
%qW5N21/2( jexp(iqW •rW j ) for wave vector qW : Fq(t)
5^%qW(t)*%qW&. The bracket denotes canonical averagi
These functions depend only on the wave-vector modu
q5uqW u. Their initial values are given by the static structu
factor Sq5^u%qW u2&, which can be expressed in terms of t
direct correlation functioncq via the Ornstein-Zernike for-
mula:Sq51/(12ncq). The characteristic frequenciesVq in
Eq. ~1!, which determine the initial decay o
Fq(t)5Fq(t)/Sq , are given byVq

25(qv)2/Sq with v denot-
ing the thermal velocity@51,52#. Equation~1! is an exact
Zwanzig-Mori equation of motion relating the density co
elatorsFq(t) to the correlation functions of longitudina
fluctuating forcesMq(t)5Mq

reg(t)1Vq
2mq(t) @50–52#. The

contributionVq
2mq(t) is due to coupling of forces to densit

fluctuation products, and all the rest is combined
Mq

reg(t). If one treats the correlations of density produc
with Kawasaki’s factorization approximation@53,54# one ar-
rives at Eq.~2!, whereFq is a quadratic polynomial

Fq~ f !5 (
kW1pW 5qW

V~qW ;kW ,pW ! f kf p . ~5a!

The non-negative coefficientsV, the vertices, are equilibrium
quantities@55#

V~qW ;kW ,pW !5nSqSkSp$qW @kWck1pWcp#%
2/~2q4! . ~5b!
ll

o-
n

n-
i-

.
s

Formulas~1!, ~2!, ~5! define the simplified or ideal MCT
@23#. They provide a self-consistent treatment of the ca
effect. A review of the derivation, the contents, the sho
comings, and an extension of the ideal MCT can be found
Ref. @56#.

The theory shall be specialized to a system of h
spheres with diameterd, whose equilibrium state is specifie
by a single control parameter, the packing fracti
w5pnd3/6. The structure factor shall be evaluated by t
Percus-Yevick theory@52#. Thereby theV(qW ;kW ,pW ), and thus
the functionsFq , are obtained as smooth functions ofw.
Furthermore, the wave-vector dependence of the regular
tion constants shall be ignored,nq5n; the time constants in
the equations of motion are then given as smooth functi
of w by

tq5tmicSq /~qd!2. ~6!

Here,tmic5n(d/v)2 is a time scale for the dynamics on m
croscopic length scales. The sum in Eq.~5a! can be written
as a double integral overk5ukW u andp5uqW 2kW u which shall
be approximated by a Riemann sum. To do this, a grid
100 values for the moduli is chosen so that theqd are placed
with step sizeh50.4 from 0.2 up to a cutoffq* d539.8,

Fq~ f !5n@h3/~32d3p2!#(
k̂

( 8
p̂

SqSpSk~ k̂p̂/q̂
5!

3@~ k̂21q̂22 p̂2!ck1~ p̂21q̂22 k̂2!cp#
2f kf p .

~7!

Here qd5hq̂,kd5hk̂,pd5hp̂ and q̂,k̂,p̂
51/2,3/2, . . . ,199/2. The prime at the sum means that t
summation is restricted touq̂2 k̂u11/2< p̂<q̂1 k̂21/2. All
numerical results and figures in this paper refer to
M5100 component model, defined by Eqs.~2!, ~3!, ~6!, and
~7!. Units of length and time shall be chosen so thatd51
and tmic5160.

MCT equations for hard-sphere systems have alre
been studied before@23,57–60#. In the earlier work usually
the Verlet-Weis approximation was used to evaluateSq , the
cutoff q* was chosen larger, the grid was taken finer, a
special attempts were made to handle the small-wave-ve
contributions toFq carefully. Our simplifications lead to
small differences of various amplitudes and constants c
pared to previous results. These differences do not exc
5%, and are therefore of no interest for the intention of t
paper.

Equations~3! and ~6! imply, that our model reproduce
the initial decay of a hard-sphere colloidal suspension w
out hydrodynamic interaction@61#. It can therefore be con
sidered as a model for a colloid where all interaction effe
are ignored except those which describe the coupling
tween density fluctuation pairs and fluctuating forces. F
such a model the MCT equations~2!, ~3!, ~5!, and ~6! can
also be derived from the Smoluchowski equations@62,63#.
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III. THE BIFURCATION OF THE GLASS-FORM FACTOR

In this section some concepts and equations are in
duced, which will be needed for a discussion of the MC
solutions near bifurcation points. The technique
asymptotic expansions is demonstrated for the form fa
f q of the glass.

A. The ideal liquid-glass transition

Equation~4! shows that the correlators decrease mono
nously towards their long-time limitsf q5Fq(t→`), which
obey 0< f q,1. If these limits f q are zero, density fluctua
tions die out for long times, as one expects for an ergo
liquid. Edwards and Anderson pointed out in some ot
context @64#, that a nontrivialf q.0 is the signature of an
ideal glass state. In this case, the dynamical structure fa
Sq(v) @50–52# exhibits an elastic contribution:Sq(v)
5SqFq9(v)5p f qSqd(v)1~integrable function ofv!. Thus
f q—which is called Edwards-Anderson parameter, non
godicity parameter, or glass-form factor—is the Deby
Waller factor of an ideal glass state.

From Eqs.~1! and ~2! one derivesM coupled implicit
equations forf5( f 1 , . . . ,f M) @23#

f q /~12 f q!5Fq~ f ! , q51, . . . ,M . ~8!

The long-time limits f q obey the maximum property@36#:
f̃ q< f q , q51, . . . ,M , where thef̃ q abbreviate any solution
of Eq. ~8!. Let us consider the sequence of vecto
f ( j ), j50,1, . . . , defined by the iteration f q

( j11)/
(12 f q

( j11))5Fq( f ( j )), starting with f q
(0)51. One can show

@49# that thef q
( j ) converge towardsf q in the limit j→`. We

have used this iteration to evaluatef q for our model and
found the critical packing fractionwc50.515 912 13(1)
separating liquid from the glass solutions. Studies of gla
behavior require the analysis of dynamical windows and
shifts of spectral features over many orders of magnitude@1#.
To reproduce such studies within the MCT one has to s
w2wc to very small values, as will be shown below in Fig
4–6. To do this in a reproducible manner, one has to iden
the critical pointwc with such high accuracy as noted.

For negative values of the reduced packing fract
e5(w2wc)/wc , all correlators decay to zero, while fo
e.0 ideal glass states withf q.0 are obtained. Forw ap-
proaching the critical value from above, thef q approach
positive constants, called critical form factorsf q

c . Considered
as a function ofw, the long-time limitsf q are discontinuous
at wc . The pointw5wc is also called glass-transition singu
larity; it marks a bifurcation point.

B. The leading asymptotic results

In order to study the form factor near the singularity w
write f q5 f q

c1(12 f q
c)2gq and solve Eqs.~8! for small gq

and small positivee. The leading term of this expansion ha
already been worked out in Ref.@7#, but we need to recal
some of the earlier results as basis of the intended extens
of the analytical work. The nontrivial bits of the expansio
are the Taylor coefficients ofFq for f5 f c, which shall be
used with the convention
o-
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Cqk1•••km
5

1

m!
@]mFq~ f c!/] f k1•••] f km#

3~12 f k1
c !2•••~12 f km

c !2 . ~9a!

These are smooth positive functions ofe. The values of these
and other quantities fore→10 shall be indicated by a su
perscriptc. Let us introduce the differencesDC5C2Cc, so
that

Cqk1•••km
5Cqk1•••km

c 1DCqk1•••km
,

DCqk1•••km
5eCqk1•••km

8c 1O~e2! . ~9b!

One can rewrite Eq.~8! as

(
k51

M

@dqk2Cqk
c #gk5I q . ~10a!

This result looks like a set ofM linear equations. However
the nonlinearities are hidden in the inhomogeneityI q , which
shall be written as a sum of two terms

I q5I q
~1!1I q

~2! , ~10b!

I q
~1!5DCq2~12 f q

c!gq
21(

kp
Cqkp
c gkgp , ~10c!

I q
~2!5(

k
DCqkgk2~12 f q

c!2gq
31(

kpl
Cqkpl
c gkgpgl

1O~eg2,g4! . ~10d!

Let us also consider the matrix Ĉqk
5@]Fq( f )/] f k#(12 f k)

2. The Jacobian matrix of the system
of equations~8! is equivalent to theM3M matrix 12Ĉ.
The matrixĈ has only non-negative elements:Ĉqk>0. Thus,
according to the Frobenius-Perron theorems@65#, there is a
nondegenerate maximum eigenvalueE of the matrixĈ; ge-
nerically any other eigenvalue, sayE8, obeysuE8u,E. One
can show@49# thatE<1. If E,1, the Jacobian matrix can
be inverted andf varies smoothly withw. The condition for
a glass-transition singularity therefore isE5Ec51. For
w5wc , one getsĈqk5Cqk

c . The right and left eigenvector
of Cc belonging to the eigenvalue unity shall be denoted
e and ê, respectively,

(
k
Cqk
c ek5eq ; (

q
êqCqk

c 5êk . ~11!

Generically, the numberseq ,êq can be chosen positive@65#.
To fix the vectors uniquely we impose the conventio
(qêqeq51 and(qêq(12 f q

c)eq
251.

Due to the vanishing of the determinant of the mat
12Cc, Eq. ~10a! can only be solved if the inhomogeneity o
the right-hand side satisfies the solubility condition

(
q

êqI q50 . ~12a!
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The general solution of Eq.~10a! is the sum of a multiple of
the dangerous eigenvector, sayge, and a special solution
say g̃. The latter shall be fixed uniquely by the conditio
(qêqg̃q50. It can be written as a linear combination of th
inhomogeneities

gq5geq1g̃q , g̃q5(
p
RqpI p . ~12b!

One can use simple series expansions@36# to evaluate
E,ê, e, andR.

The glass-transition singularity is caused by the Jacob
matrix to have a vanishing nondegenerate eigenvalue 12E.
This means that the MCT bifurcation is a cuspoid bifurcat
Al , l52,3, . . . inArnold’s terminology@66#. For w→wc ,
l solutions of Eq.~8! coalesce. The simplest possibility, th
Whitney fold bifurcationA2, occurs if the positive numbe
l5(qkpêqCqkp

c ekep differs from unity and then the solutio
for small e.0 can be obtained by an expansion in pow
of Ae. In this case one gets I (2)5O(e3/2),
g5O(Ae),g̃5O(e). Thus, the solubility condition~12a!
reads in leading order(qêqI q

(1)50 andI (1) can be obtained
from Eq. ~10c! with gq5geq . One findss2g21lg250.
We get for our model l50.735. The quantity
s5(qêqDCq , which is called the separation parameter, v
ies smoothly withe. In leading order ine one can write

s5Ce , C5(
q

êqCq8
c , ~13!

where for our model C51.54. Thus one finds
g56As/(12l)1O(e) for s.0. Because of the maxi
mum property the positive solution forg describes the smal
e asymptotics of the glass-form factor. Introducing the cr
cal amplitudehq>0 by

hq5~12 f q
c!2eq , ~14!

the leading-order result can therefore be noted as

f q5 f q
c1hqAs/~12l! , s.0 . ~15!

Figure 1 exhibits the separation parameters as a function
of the packing fractionw in comparison with the linea
asymptote~13!. The latter describess correctly within 10%
for ueu<0.04. The next Taylor expansion term ofs is of
order e2 and, therefore, it would influence the asympto
expansion off as a correction of ordere3/2. Since we are
going to consider only leading and next-to-leading exp
sions inAe, thee2 correction ofs does not enter. Therefore
throughout the rest of this paper,s is merely meant to ab
breviateCe.

In Fig. 2~a!, the structure factorSq is shown fore50 and
e561024/3. Sq is the basic input for our model. In Fig. 2~b!,
the results for the critical form factorf q

c and the critical am-
plitude hq are shown. For largeSq , the compressibilitykq

}Sq is large. Therefore spontaneous arrest is easy, anf q
c

exhibits a maximum near the position of the structure-fac
peak; with varyingq, f q

c oscillates in phase withSq . Since
f q<1, f q2 f q

c is bounded by 12 f q
c . The amplitudehq for
n

s

-

-

-

r

the increase off q is therefore much smaller forq;7 than for
q off the structure-factor-peak position. The transition
driven primarily by the wave-vector contributions from
q;7. For very largeq, both f q

c andhq become small.

FIG. 1. The separation parameters as function of the packing
fraction w ~solid line!. The dashed line is the linear asympto
s51.54e, e5(w2wc)/wc , wc'0.516. The diamonds mark th
valuesw50.495 and 0.536, where the asymptote deviates froms
by 10%.

FIG. 2. ~a! Structure factorSq as function of wave vectorq for
w5wc'0.516 ~solid curve!, w50.492 ~dashed curve!, and
w50.540 ~dotted curve!. The arrows mark the wave vector
q053.4, q157.0, q2510.6, andq3517.4. ~b! The critical form
factor f q

c ~diamonds! and the critical amplitudehq ~squares!. ~c! The
amplitudesK̄q @Eq. ~16!, circles# andKq @Eq. ~23!, triangles#.
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In the following, the dynamics will be discussed in det
for the two representative wave vectorsq157.0, q2510.6.
The first one is close to the position of the structure-fac
peak and the second one is close to the first minimum p
tion @compare Fig. 2~a!#. These vectors will be referred t
as 1 and 2. One getsS1

c53.49,S2
c50.597;f 1

c50.849, f 2
c

50.417;h150.323,h250.642. Let us also note the tim
scales for the transient motion, Eq.~6!: t1

c511.4,t2
c50.851.

In Fig. 3, the variation off q with changes of the density i
compared with the leading asymptotic formula~15!. It works
on a 10% accuracy level forq1 up to e50.003 only. The
comparison for the large wave vectorq3517.4 is also
shown, where a 10% accurate description can be achie
only for e<0.002. Forq2 the 10% approximation works u
to e50.08, but this large value is mainly due to an acciden
cancelation of higher-order terms.

C. The leading corrections

There are two contributions to the next-to-leading order
the expansion ofgq . One is given byg̃q in Eq. ~12b!. It is
obtained fromI q which can be approximated byI q

(1) . In the
leading partI q

(1) of the inhomogeneity, Eq.~10c!, one can
substituteDCq5Cq8

ce and gq5eqAs/(12l). The result
shall be written asg̃q5eqsK̄q /A12l, so that

K̄q5(
k
RqkHA12lCk8

c/C2F ~12 f k
c!ek

2

2(
pl

Ckpl
c epel G Y A12lJ Yeq . ~16!

The other contribution is obtained by solving Eq.~12a! with
the formulag5As/(12l)@11kAs1O(s)# in Eq. ~12b!.
For the coefficientk, one finds

FIG. 3. Glass-form factorsf q for the wave vectorsq157.0,
q2510.6, andq3517.4 ~solid lines!. The leading asymptotes@Eq.
~16!, dashed# describe the resultf q2 f q

c within 10% up to the pack-
ing fractions which are marked by diamonds. The formula includ
the next-to-leading asymptote@Eq. ~18!, dotted# works within a
10% accuracy level up toe50.141,0.033,0.064 forq1 ,q2 ,q3, re-
spectively; the corresponding packing fractions are marked
circles.
l

r
i-

ed

l

f

k5
1

12l(
q

êqH (
kp

Cqkp
c ekepK̄p2~12 f q

c!eq
2K̄q

1
A12l

2 (
k
Cqk8

cek /C2
1

2A12l
F ~12 f q

c!2eq
3

2(
kpl

Cqkpl
c ekepel G J . ~17!

For our model, one getsk50.961, K̄1522.26, K̄2

520.515, K̄351.28. The desired result, which describ
f q up to errors of ordere3/2, reads

f q2 f q
c5hqAs/~12l!@11As~K̄q1k!# . ~18!

The leading-order result~15! describesf q2 f q
c within a small

relative errore* as long as the separation parameter ob
the inequalitys<e* 2/(K̄q1k)2. Figure 2~c! shows the am-
plitudeK̄q for our model. In Fig. 3 it is demonstrated that th
result~18! describes the solution on a 10% accuracy level
q1 (q2 ,q3) up to the packing fractionsw50.589
(0.533,0.549), respectively.

IV. THE TWO-STEP-RELAXATION SCENARIO

Figures 4–6 demonstrate the dynamics of our model. T
curves labeledc exhibit the critical dynamics, i.e., they ar
calculated forw5wc . The others refer to reduced packin
fractions, which are spaced with equal distance on a logar
mic scale with three values per decade:e56102n/3,

g

y

FIG. 4. CorrelatorsF1 and F2 for the two wave vectors
q157.0 andq2510.6, respectively, as function of log10t, calculated
for the packing fractionsw5wc(11e),e56102n/3. The thick
curves labeledc are the solutions fore50. The dotted lines are
Debye functionsf cexp2(t/tD) with f c50.849,tD51.3731011, and
f c50.417,tD52.8331010 for q1 andq2, respectively.
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FIG. 5. Correlation spectraF19(v) and F29(v) as function
of frequencyv for the results shown in Fig. 4. The dotted line
are Debye spectraFD(v)52xmaxtD /@11(vtD)

2#, with xmax

50.370 forq1 andxmax50.147 forq2, andtD , specified in con-
nection with Fig. 4.

FIG. 6. Susceptibility spectrax9(v)5vF9(v) for the results
shown in Figs. 4 and 5. The dotted lines are Debye pe
xD9 (v)52xmaxvtD /@11(vtD)

2#, with tD and xmax specified in
connection with Figs. 4 and 5, respectively.
n50,1,..,14. Results fore.0 andn50,1,2 are not consid-
ered, since for the corresponding large packing fractions
Percus-Yevick theory yields unphysical negative pa
distribution functions. Notice, that the curves fore,0 and
n50 refer to a vanishing relaxation kernel; they demonstr
elementary dynamics, as described by the Debye law. In
section some general features of the shown transition
nario shall be pointed out, and some concepts for its desc
tion shall be introduced.

The correlatorsFq(t) are smooth functions ofe on any
finite interval of time@49#. Therefore they have to be close
the critical correlatorsFq

c(t) if ueu is small and if the time is
smaller than some crossover timetco . The cited smoothnes
implies that this time scaletco diverges if the critical point is
approached:tco(e→0)→`. There appears a first window
for stretched relaxation. It deals with the dynamics for tim
which are larger than some timet0 characterizing the tran
sient but which are short compared totco . The first relax-
ation step describes the long-time decay towards the crit
plateauf q

c . For t!tco , the decay curves aree insensitive as
is demonstrated in Fig. 4. For normal liquids, one finds
white-noise spectrum,Fwhite noise9 (v)}v0, for frequencies
v below the band characterizing microscopic moti
@51,52#. This behavior is demonstrated in Fig. 5 by the D
bye spectra~the curves fore,0,n50) for v,0.1. The
stretching of the critical dynamics implies an enhancem
of the spectraFq

9(v) above the mentioned white-noise lev
for 1/tco!v!1/t0. For q5q2 and n>10, one infers from
Fig. 5 that the critical-spectrum enhancement amounts
more than a factor 100 ifv decreases three decades bel
0.1. A white-noise spectrum leads to a linear susceptibi
spectrum,xwhite noise9 (v)}v, as is demonstrated in Fig. 6 fo
the e,0,n50 results forv,0.1. The spectral enhanceme
due to the critical dynamics leads to a sublinear susceptib
variation for small frequenciesxq9(v)}va, a,1, within the
window 1/tco!v!1/t0.

Let us define the crossover time scaletco more precisely.
For the liquid, the scale is denoted bytq

2 ; it shall be chosen
as the one, where the critical plateau is cross
Fq(tq

2)5 f q
c . For the glass, the scale is denoted bytq

1 ; it
shall be taken as the one where the plateau is reached w
0.1%: Fq(tq

1)2 f q
c51.001(f q2 f q

c). Figure 7~a! exhibits
these scales as a function ofw for q5q2. One can check tha
for small ueu the ratiotq

2(2ueu)/tq
1(ueu) becomese indepen-

dent. In Fig. 7~c!, the ratiot1
6/t2

6 of the scales for the two
wave vectorsq1 ,q2 are shown as a function ofw. For small
ueu, the ratios are unity, i.e., the scales are asymptotic
independent ofq. In this sense one concludes, that there
only one scaletco , terminating the first structural-relaxatio
step. The divergence oftco}tq

1 for w→wc10 is the signa-
ture of the glass instability at the transition point. The dive
gence oftco}tq

2 for w→wc20 signalizes the freezing o
the liquid at the critical point.

The liquid solutions exhibit a second relaxation proce
for t.tq

2 . It deals with the decay from the critical platea
f q
c to zero. The second relaxation step leads to thee sensitive
quasielastic peaks of the relaxation spectra in Fig. 5 an
the corresponding low-frequency peaks for the susceptib
spectra in Fig. 6. These peaks are the analog of Mounta

s
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peaks@67# for molecular liquids. Within the MCT for simple
liquids, it is the whole cluster of a particle with its cag
which plays the role of the molecule. Following the term
nology of the glass literature@1#, the second relaxation ste
is called thea process.

An a-relaxation time scaletq8 can be defined, for ex
ample, as 1/tq85vmax(q), wherevmax(q) denotes the posi
tion of the a-peak maximum of the susceptibility spectr
Again, one concludes from the convergenceFq(t)→Fq

c(t),
for e→0 and for any fixed finite time interval, thattq8→`
for e→02. Figure 7~a! exhibits the strong increase oftq8
upon approaching the bifurcation point forq5q2. Another
possibility for defining ana scale, sayt̄q8, is given by
Fq( t̄q8)5 f q

c/2. One deduces from Figs. 4 and 6, howev
that tq8/ t̄q8 are independent ofe for small separations. The
a scales for different correlators are different as one inf
by comparing Fig. 4~a! with 4~b! or Fig. 6~a! with 6~b!.
However, the ratio of the scales, sayt18/t28 , becomes inde-
pendent ofe for w→wc20 as is shown in Fig. 7~b!. Both
scales diverge fore→0 but so that t185C1t8 and
t285C2t8, where t8→` for e→02, and C1,2 asymptoti-
cally aree independent. In this sense one concludes, that
a scales of different correlators are coupled, to use ano
concept from the glass literature@1#. Asymptotically, the
slowing down of thea process is characterized by a sing
scalet8.

FIG. 7. ~a! The crossover timestq
7 ~diamonds! characteriz-

ing the first relaxation step and thea-relaxation timetq8 ~squares! as
a function ofw for the reduced packing fractione57102n/3,n5
329 for the wave vectorq2510.6. The solid lines are the powe
law functions:t75c7 /ueud, c250.149, c150.706,d51.60,t85
c8/ueug,c850.0920,g52.46. ~b! Ratio of thea-relaxation scales
t18/t28 ~squares! for wave vectorsq157.0 andq2510.6. ~c! The
ratio of the crossover scalest1

6/t2
6 ~diamonds! for the wave vectors

q1, q2. The horizontal lines in~b! and~c! mark thew→wc asymp-
totes 4.6 and 1.0, respectively.
,

s

e
er

Upon approaching the transition, the length of the tim
interval whereFq(t) is close to the critical plateauf q

c in-
creases, as is obvious from Fig. 4. Fore→02, both charac-
teristic timest2 andt8 become large relative to the micro
scopic time scalet0. However, the second time sca
becomes large even relative to the large scalet2 of the first
process:t8/t2 increases fore→02. This is demonstrated in
Fig. 7~a!. The curves forn andn11 in Figs. 4–6 differ in
factors 1021/3 for the reduced packing fractione. One infers
from Fig. 4 that the corresponding timest̄q8 also differ by a
constant factorx. Similarly Fig. 6 demonstrates that th
vmax(q) differ by the same factorx. This means, that the
a-relaxation scale follows a power law:t8}1/ueug;g
53 log10x. The analogous conclusion is reached for the fi
relaxation scale:tq

6}1/ueud. The found increase oft8/t2 is
equivalent tog.d. Power-law functions are shown as line
in Fig. 7~a!.

The a spectrum ofFq9(v) is not placed on top of some
white-noise background but on top of an anomalous sp
trum. It is easier to avoid mixing up the two spectra due
the two relaxation steps, if one considers the susceptib
spectra of Fig. 6. The high-frequency wing of thea peak is
a function, which decreases with increasingv. But the criti-
cal susceptibility spectrum increases withv. Thus the cross-
over from the first to the second relaxation step manife
itself in a minimum at some frequencyvmin(q). The critical
spectrum leads to an enhancement of the spect
xmin(q)5xq9„vmin(q)… above a white-noise background
xmin(q)@xwhite noise9 „vmin(q)…. The first step of the struc
tural relaxation of the liquid leads to the spectrum within t
window vmin(q)!v!1/tq . The second step of the struc
tural relaxation leads to the low-frequency spectra
v!vmin(q).

The glass correlators do not exhibit a second relaxa
step, rather they arrest atf q. f q

c for t@tco . If one wanted to
characterize the long-time dynamics of the glass also b
time scalet8, one would have to use 1/t850. ForwÞwc the
distribution of rates in Eq.~4! exhibits a gap@49#. This
means that all correlators approach their long-time limit e
ponentially foreÞ0. Therefore the glass spectra vary reg
larly for v!1/tco . The crossover from the linear low
frequency spectrum,xq9(v!1/tco)}vtq

1 , to the sublinear
critical spectrumxq9(v@1/tco)}(vt0)

a, produces a knee a
some frequencyvK(q). The position of the knee can be de
fined, for example, as the one of the maximum of t
xq9(v)/Av versus v curve. Again the knee intensity
xK(q)5xq9„vK(q)… is enhanced above the white nois
xK(q)@xwhite noise9 „vK(q)…. By constructing similar figures
as Fig. 7 one can convince oneself thatvmin(q)}1/tq

2 and
vK(q)}1/tq

1 .
For a Debye correlator, the time ratio (t/tq) has to in-

crease by about 1.34 decades from 0.105 to 2.303 in orde
scan the decay from 90% to 10% of the initial value. For t
same decay, the correlatorF2 for e,0,n56 requires an in-
crease oft by about a factor 6.333104 as one infers from
Fig. 4~b!. This stretching of the specified time interval ov
more than four orders of magnitude is equivalent to a stre
ing of the susceptibility spectrum over a corresponding hu
frequency window. A Debye susceptibility pea
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xD9 (v)52xmaxvtD /@11(vtD)
2# has a width at half maxi-

mum of 1.14 decades. The spectrume,0,n56 in Fig. 6~b!
extends at half height fromv52.8131025 to v55.61. Its
width is more than 14 000 times larger than that for a Deb
process.

Figure 6 exhibits Debye peaks as dotted lines;tD5t8 and
the xmax are adjusted so that thea-peak maxima for the
e,0,n514 results are matched. The corresponding corr
tion spectraFD9 (v)5xD9 (v)/v are shown in Fig. 5 and the
decay curvesf q

cexp(2t/tD) are included as dotted lines i
Fig. 4. Comparing the dotted lines with the ones for t
n514 a process, one concludes that stretching is not o
due to the crossover from the first to the second relaxa
step, as discussed in the preceding paragraph. Thea process
itself is stretched. The mentioned gaps in the distribution
rates%q(g) in Eq. ~4!, imply that the low-frequency parts o
thea peaks behave regularlyxq9(vt8!1)}(vt8). This fea-
ture is shared betweena processes and Debye processes
one notices by comparing the dotted curves with
e,0,n514 curves in Fig. 6. The high-frequency wing of
Debye spectrum decreases linearly:xD

9 (vtD@1)}1/(vtD);
the log10xD9 versus log10v plot is symmetric. Thea-peak
stretching is mainly caused by a sublinear decrease of
susceptibility spectrum for 1/t8!v!1/tco : xq9(v)
}1/(vt8)b, b,1. This also leads to the asymmetric shap
of the log10xq9(v) versus log10v graphs shown in Fig. 6 for
thea peaks.

The preceding discussion implies that the integ
*0

`F(t) dt diverges fore→0. Therefore the Laplace trans
formsFq(z) andmq(z) diverge forz→0,e→0. The Laplace
transform of Eq. ~3! reads Fq(z)521/@z21/„i tq
1mq(z)…]. In the specified limit one can neglecttq in com-
parison withmq(z), i.e., the correlators for the slow dynam
ics near the transition point solve the equati
Fq(z)521/@z21/mq(z)#, or equivalently@37#

Fq~z!/@11zFq~z!#5L@Fq„F~ t !…#~z! . ~19!

The following calculations of this paper will deal with th
analytic discussion of Eq.~19! with the aim to provide an
understanding of the Figs. 4–7. The parameterstq do not
occur in Eq.~19! and therefore this equation cannot define
time scale. Indeed, Eq.~19! is scale invariant: if the set o
correlatorsFq(t), q51, . . . ,M , solves Eq.~19!, the same
is true forFq

y(t)5Fq(yt) for everyy.0. One overall time
scalet0 for the solution has to be determined by matchi
theM correlatorsFq(t) to the transient.

V. THE TWO TIME FRACTALS

In this section we will discuss how the appearance of t
relaxation steps is related to the appearance of two fra
power laws in time, which is quantified by two anomalo
exponentsa and b. The critical exponenta describes the
low-frequency critical susceptibility spectrum and the v
Schweidler exponentb quantifies the high-frequenc
a-peak wings. In Sec. VA a set of auxiliary results will b
derived, which is needed for the discussion of the frac
decay laws. These results will be used, in particular, to
termine the range of validity of the power-law description
e
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the critical dynamics~Sec. VB! and the range of validity of
the von Schweidler-law description of thea process~Sec.
VC!.

A. The two anomalous exponents

Let us introduce a functiongq(t) and its Laplace trans
form gq(z) so that the correlators are represented as

Fq~ t !2 f q
c5~12 f q

c!2gq~ t ! ;

2zFq~z!2 f q
c5~12 f q

c!2@2zgq~z!# . ~20a!

The functionsgq(t) and @2zgq(z)# are generalizations o
the constantsgq , which were considered in Sec. III B. Bot
functions reduce to these constants if the limit 1/t→0 or
z→0, respectively, is considered for the glass. Both fun
tions are used as small quantities in the following. Substi
ing Eq. ~20a! into Eq. ~19! yields the equations of motion

zgq~z!/@11~12 f q
c!zgq~z!#

5@ f q
c/~12 f q

c!#1zL@Fq„f kc1~12 f k
c!2gk~ t !…#~z! .

~20b!

Let us specialize the preceding formulas to the critical po
w5wc . Expansion of Eq.~20b! leads to Eq.~10a! with gk
replaced by@2zgk(z)#. The inhomogeneityI q in this equa-
tion is also generalized to az-dependent function
I q(z)5I q

(1)(z)1I q
(2)(z). The first part is easily recognized a

a modification of Eq.~10c!

I q
~1!~z!52~12 f q

c!@2zgq~z!#2

2(
kp

Cqkp
c zL@gk~ t !gp~ t !#~z! . ~21a!

The second part is a modification of Eq.~10d!

I q
~2!~z!52~12 f q

c!2@2zgq~z!#3

2(
kpl

Cqkpl
c zL@gk~ t !gp~ t !gl~ t !#~z!1O~g4! .

~21b!

The solution shall be constructed by an obvious gener
zation of the one carried out above for Eqs.~10!, ~12!. One
writes in analogy to Eq.~12b! gq(t)5g(t)eq1g̃q(t), and
notices thatg̃q(t) is of higher order thang(t). Therefore, one
gets

zg̃q~z!5(
p
RqpH ~12 f p

c!ep
2@2zg~z!#2

1(
kl

Cpkl
c ekelzL@g~ t !2#~z!J 1O~g3!. ~22a!

The expression forI q
(1)(z) is noted as a sum of second- an

third-order terms in addition to unspecified contributions
fourth order



e
y

th

he
C
po

o

fo
te
th
-

th

Th
e

to

t

fo

-
ed

sts

p-

g

d-
ults
the

7162 55FRANOSCH, FUCHS, GO¨ TZE, MAYR, AND SINGH
I q
~1!~z!52~12 f q

c!eq
2@2zg~z!#2

2(
kp

Cqkp
c ekepzL@g~ t !2#~z!

22~12 f q
c!eq@z

2g~z!g̃q~z!#

22(
kp

Cqkp
c ekzL@g~ t !g̃p~ t !#~z!1O~g4! .

~22b!

The expression forI q
(2)(z) starts with terms of third order

I q
~2!~z!5~12 f q

c!2eq
3@zg~z!#32(

kpl
Cqkpl
c ekepelzL@g~ t !3#~z!

1O~g4! . ~22c!

The functiong in Eqs.~22! has to be evaluated from th
solubility condition~12a!. For a leading-order solution, onl
the second-order terms in Eq.~22b! have to be taken into
account. Remembering the normalization condition for
eigenvectorseq ,êq and the definition ofl from Sec. III B,
one arrives at2zg(z)25lL@g(t)2#(z). This equation is
solved byg(t)5A/tx, provided the exponentx obeys the
equationG(12x)2/G(122x)5l. Here and in the follow-
ing, G denotes theg function. For 0,l,1 there are two
solutions for the exponentx. One is denoted bya, and obeys
the inequalities 0,a,1/2. The other is denoted by2b,
where 0,b. The leading-order considerations lead to t
conclusion that there are two power laws hidden in the M
equations of motion, specified by the two anomalous ex
nentsa and b @6,7#. The exponents are determined byl,
which is, therefore, called the exponent parameter. For
model one getsa50.312, b50.583.

B. The critical dynamics

The critical decay is described in Eq.~20a! by a positive
function gq(t), which decreases monotonously to zero
large t. Hence, the long-time critical decay can be evalua
by the methods of Sec. VA. In the preceding paragraph
solutionx5a has to be chosen andA has to be taken posi
tive. The constantA can be written in terms of a timet0:
A5t0

a . Remembering the definition~14! of the critical am-
plitude, one therefore obtains as a leading-order result for
critical correlatorFq

c(t)2 f q
c5hq(t0 /t)

a @7#. Figure 8 shows
the leading-order power-law results as dashed lines.
scalet0 for our model was found by matching the long-tim
asymptotes to the solution for@Fq

c(t)2 f q
c# for t;106:

t050.425. The leading-order result describes the correla
within 10% for times down tot1*5990 forq1 andt2*514 for
q2. The leading-order susceptibility spectraxq9(v)
5hqsin(pa/2)G(12a)(vt0)

a, shown as dashed straigh
lines in the double logarithmic plots of Fig. 8~b!, describe the
critical susceptibility spectra within a 10% accuracy level
e
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frequencies belowv1*52.931025 for q1 and below
v2*52.131023 for q2. Let us recall, that the need for intro
ducing a scalet0 results from the scale invariance, discuss
above in connection with Eq.~19!.

The leading correction to the leading power law consi
of two contributions. One is due to the termg̃q(t) in Eq.
~12b!. It can be obtained by substitution of the leading a
proximationg(t)5(t0 /t)

a into Eq.~22a!. The result shall be
written asg̃q(t)5eqKq(t0 /t)

2a, so that

Kq5(
p
RqpF(

kl
Cpkl
c ekel2l~12 f p

c!ep
2G Yeq . ~23!

The amplitudesKq for our model are shown in Fig. 2~c!; in
particular, one getsK1521.02 andK2520.183. The result
for g̃q can be substituted into Eq.~22b! so that I q(z)
5I q

(1)(z)1I q
(2)(z) is expressed in terms ofg2,g3 and un-

specified termsO(g4). The other contribution to the leadin
correction is found by solving Eq.~12a! with the expansion
g(t)5(t0 /t)

a1k(t0 /t)
2a1O(1/t3a). One finds k5k(a),

where the functionk(x) is determined by two constantsj
andz

FIG. 8. The solid lines are the correlators~a! and the suscepti-
bility spectra ~b! for q157.0 andq2510.6 at the critical point
w5wc . The leading-order critical lawsFq(t)2 f q

c5hq(t0 /t)
a and

xq95G(12a)sin(pa/2)(vt0)
a,a50.312,t050.425 are shown by

dashes and the diamonds mark the positionstq* andvq* , respec-
tively, where they differ from the solution by 10%. The dashe
dotted lines present the leading-plus-next-to-leading-order res
Eqs.~27!. The circles mark the points where these deviate from
solutions by 10%. The dotted lines in~a! show the Debye laws
Fq

(0)(t)5exp(2t/tq).
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j5(
q

êqF(
kp

Cqkp
c ekepKp1

1

2(kpl Cqkpl
c ekepel G , ~24!

z5(
q

êqF ~12 f q
c!eq

2Kq

1

l
1
1

2
~12 f q

c!2eq
3G , ~25!

k~x!5@jG~123x!2zG~12x!3#/@G~12x!G~122x!2lG~123x!# . ~26!
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As a result one finds for the critical correlator up to errors
order (t0 /t)

3a

Fq
c~ t !2 f q

c5hq~ t0 /t !
a$11@Kq1k~a!#~ t0 /t !

a% . ~27a!

This formula is equivalent to the approximation of the cri
cal susceptibility spectra up to errors of order (vt0)

3a by

xq
c9~v!5hqsin~pa/2!G~12a!~vt0!

a$11@Kq1k~a!#

3ka~vt0!
a% , ~27b!

where ka52cos(pa/2)G(12a)/l. For our model one ob-
tainsj50.0422,z50.269,k(a)520.001 65,ka53.16.

Equations ~27! explain the range of validity of the
leading-order power laws. The corrections reach 10%
times tq* or frequenciesvq* , where in leading order

tq* /t05@10„Kq1k~a!…#1/a ; vq* t051/@~ tq* /t0!ka
1/a# .

~28!

As illustrated in Fig. 8~a!, formula~27a! describes the critica
dynamics within 10% for times down to 8.2 and 2.4 forq1
andq2, respectively. The result~27b! accounts for the criti-
cal spectra on a 10% accuracy level for frequencies up
2.631023 and 1.931022 for q1 andq2, respectively, as is
demonstrated in Fig. 8~b!. Incorporating the leading correc
tions extends the range of validity of the analytical formu
for the critical dynamics by nearly one decade forq2 and by
about two decades forq1. Figure 8~a! exhibits as dotted lines
the Debye laws, which describe the transient dynamics
leading-order approximation. There appears only a sm
window for the crossover from short-time normal liquid d
namics to the structural-relaxation dynamics.

Three features of the preceding results should be em
sized. First, the long-time or low-frequency dynamics
quantified by Eqs.~27! is determined by the mode-couplin
functionalFq . This holds except for the single scalet0. This
numbert0 quantifies the matching of the long-time deca
for all q to the transient. The transient depends onq as is
obvious from Figs. 4 or 6; and one reason for this is
strongq dependence of the time scalestq Eq. ~6!. This q
dependence of the transient leads to theq dependence of the
size of the window where neither the short-time behavior
Eq. ~27! describe the correlators.

Second, Fig. 8 shows that the range of validity of t
leading-order results depends onq. This range is much large
for q2 than for q1. The reason is theq dependence ofKq
@compare Fig. 2~c!#, which enters the results via Eqs.~27! or
~28!. One infers from Fig. 2~c!, that there is one value fo
q, where the correction factor@Kq1k(a)# in Eqs. ~27! al-
f

r

to

s

a
ll

a-
s

e

r

most vanishes. In this case the range of validity of thet2a

law is particularly large. The amplitudesKq also enter the
following formulas~30! and theirq dependence will be ex
plained in that context.

Third, the timetq* characterizing the onset of the 1/ta law
and the frequencyvq* characterizing the onset of thev

a law
are not related by the naive request ofvq* tq* being unity.
Rather, one getsvq* tq*5ka

21/a . For our model vq*
50.025/tq* . The size of the frequency window between t
microscopic excitation peak, located at log10v;0, and the
onset log10vq* of the va spectrum is larger than the size o
the corresponding time window between log10t;0 and
log10tq* . In this sense, one concludes that it is more diffic
to detect the critical decay in the frequency domain than
the time domain.

C. The von Schweidler dynamics

In this subsection, the second time fractal shall be ide
fied as the initial part of the second relaxation step. To p
ceed, we consider times on thea-relaxation scalet8 by writ-
ing t5 t̃t8,Fq(t)5F̃q( t̃). Then, we carry out the limit
e→02,t8→` for fixed t̃ andF̃q . Thereby, thea process is
separated not only from the transient but also from the fi
relaxation step. The functionF̃q( t̃) describes the decay from
the critical plateau,F̃q( t̃→0)5 f q

c , to zero,F̃q( t̃→`)50.
From the MCT equations of motion~1!, ~2!, one thereby
obtains the equation of motion for thea process@68#

F̃q~ t̃ !5m̃q~ t̃ !2~d/dt̃!E
0

t̃
m̃q~ t̃2 t̃8!F̃q~ t̃8!dt̃8 ,

m̃q~ t̃ !5Fqc„F̃~ t̃ !… . ~29!

This result can also be obtained from Eq.~19! if the limit
e→0 is considered for the mentioned initial condition
Again, Eq.~29! is scale invariant and does not allow to fi
the time scalet8 for thea process. The scale will be dete
mined in Sec. VIC below. The general implications of E
~29! will also be considered below in Sec. VII.

To understand the initial part of thea process we write
F̃q( t̃)2 f q

c5(12 f q
c)2gq( t̃) and solve Eq.~29! by expansion

in the small quantitygq( t̃). This leads to the same equation
which were derived in Sec. VA. Therefore, one finds in lea
ing ordergq( t̃)5eqg( t̃) with g( t̃)5A/ t̃ x. We seek a solu-
tion which decreases with increasingt̃ and which vanishes
for t̃→0. Therefore, from the two possibilities forx identi-
fied in the last paragraph of Sec. VA, we have to choo
x52b, and we must requireA52B, B.0. The constant
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B can be absorbed in the time scalet8. The scale depends o
the separation parameters, and—with the mentioned
conventions—it shall be denoted byts8 . In leading order one
therefore, obtainsF̃q(t)2 f q

c52hq(t/ts8 )
b @7,68#. This for-

mula is the von Schweidler law@3#, mentioned in the Intro-
duction. The leading-order correction can be obtained as
plained in Sec. VB. One gets up to terms of ordert̃ 3b

F̃q~ t !2 f q
c52hqt̃

b$12@Kq1k~2b!# t̃ b% , t̃5t/ts8 .
~30a!

This result is equivalent to the description of the hig
frequencya-peak tail up to terms of order 1/ṽ3b by

x̃q9~v!5hqsin~pb/2!G~11b!@1/ṽb#$12@Kq1k~2b!#

3kb /ṽ
b% , ṽ5vts8 . ~30b!

The amplitudesKq and the functionk(x) have been defined
in Eqs. ~23! and ~26!, respectively, and
kb52cos(pb/2)G(11b)/l. For our model one finds
k(2b)50.569 andkb51.48.

The leading corrections determine the range of validity
the von Schweidler asymptotes. These describe the in
part of thea decay within 10% up to some valuet̃ q* for the
rescaled timet̃. The von Schweidler law accounts for th
a-peak tails of the susceptibility spectrum within 10% dow

FIG. 9. The solid lines are thea-decay correlatorsF̃q( t̃) ~a! and
the correspondinga-susceptibility spectrax̃ q

9 (ṽ) ~b! for the two
wave vectorsq157.0 andq2510.6 obtained as solution of Eq.~29!.
The dashed lines are the results for the von Schweidler asymp
F̃q( t̃)2 f q

c52hqt̃
b,b50.583; they describe the solutions with

10% up to the pointst̃ q* and ṽ q* , respectively, marked by dia
monds. The dashed-dotted lines are the leading-plus-nex
leading-order approximations, Eqs.~30!. They deviate from the so
lutions by 10% at the points marked by circles.
x-

-

f
al

to some valueṽq* for the rescaled frequencyṽ. From Eqs.
~30! one obtains in leading order

t̃ q*51/@10„Kq1k~2b!…#1/b ; ṽ q*5k b
1/b/ t̃ q* . ~31!

These results are demonstrated in Fig. 9, where the va
ṽ 1*519, ṽ 2*528 and t̃ 1*50.12, t̃ 2*56.831022 are indi-
cated by diamonds. Within the intervalt̃< t̃ q* thea correla-
tor decays fromf q

c to 0.88f q
c for q1 and to 0.71f q

c for q2.
The von Schweidler law describes, on a 10% accuracy le
that part of thea spectrum, wherex q9(v)/xmax(q) is smaller
than 0.12 forq1 and smaller than 0.40 forq2. In the same
sense as discussed in the last paragraph of Sec. V B,
more difficult to identify the von Schweidler fractal in th
frequency domain than in the time domain, becau
ṽ q* t̃ q*5kb

1/b is larger than unity. For our mode
ṽq*52.0/t̃ q* .

The leading corrections extend the window of validity
the analytic description by about an order of magnitude,
can be inferred from Fig. 9. The points where the resu
Eqs.~30!, deviate from the full solutions by 10% are marke
by circles in the figures. On the specified 10% accura
level, Eq.~30a! describes the decay of thea correlator down
to 69% of its initial value forq1 and down to 2.3% forq2.
For q5q2, the correction factor2@Kq1k(2b)# in Eq. ~30!
is negative. Therefore, the high-frequency part of thea peak
is a convex curve in the log10x9 versus log10v plot of Fig.
9~b!. According to Fig. 2~c! the correction factor is larger fo
q1 than for q2, indeed, it is positive. Therefore, the high
frequencya-peak wing in Fig. 9~b! is, concave forq1. The
upper part of thea peak is, therefore, narrower forq1 than
for q2. The half width at half maximum height is 1.64 de
cades forq2; i.e., this peak is 3.1 times broader than a Deb
peak. The peak forq1 has a half width of 1.30 decades, i.e
it is only 1.4 times broader than a Debye spectrum~compare
in Fig. 6 the dotted lines with thee5210214/3 results!. The
wave-vector dependence ofKq causes the stretching to b
more pronounced for the wave vectorq2 near the structure-
factor-minimum position than for the wave vectorq1 near
the structure-factor-peak position. There is a wave vec
betweenq1 and q2 and another one betweenq0 and q1,
where the correction factor almost vanishes. For these
values ofq the range of validity of von Schweidler’s law i
particularly large.

The essential wave vectors, which drive the liquid-gla
transition, are located within a shell around the structu
factor-peak position, say, 6&qd&14. It was explained in
Sec. III, why in this shellf q

c oscillates in phase withSq , and
why hq oscillates opposite in phase; in particular,f 1

c. f 2
c

and h1,h2 @compare Fig. 2~b!#. The equations of motion
~29! couple the correlators strongly within the mention
shell. Therefore, the correlators have a tendency to re
zero roughly at the same time. At the structure-factor-pe
positionF̃q( t̃) has to achieve a larger decay than away fro
this position; and this has to happen even though the am
tudehq for the initial decay is smaller than the one near t
structure-factor-minimum position. Consequently, at t
structure-factor peak the smallest stretching results. For
decay ofF1 to catch up with that ofF2 it is necessary tha

te
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the correction factor2@Kq1k(2b)# in Eq. ~30a! is larger
for q1 than for q2, i.e., K1,K2. This explains the pro-
nounced minimum of theKq versusq graph forq;7 in Fig.
2~c!, and therefore the wave-vector dependence of
a-process stretching. It is the same amplitudeKq which
quantifies the deviation of the critical law from the leadin
order asymptote in Eqs.~27!. Thus theq dependence of the
latter result is understood qualitatively as well.

VI. THE FIRST SCALING-LAW REGIME

The regularity properties of the MCT solutions imply th
in the vicinity of the glass transition there is a time windo
where the correlatorsFq(t) are close to the critical platea
f q
c . In the frequency domain, this condition implies the e

istence of a window where the susceptibilityxq(v) is close
to 12 f q

c

uFq~ t !2 f q
cu!1 , uxq~v!2~12 f q

c!u!1 . ~32!

If e5(w2wc)/wc decreases to zero, the length of this tim
window diverges. Within the short-time part of this window
the correlators decay towardsf q

c . Within the glass, andt
neartco5t q

1 , the dynamics deals with the crossover to
rest at the long-time limitf q . For the liquid, the correlators
cross the plateau attco5t q

2 and then approach the vo
Schweidler decay for longer times. The dynamics within
specified windows is called MCTb relaxation@37#. In Sec.
VIA, it will be demonstrated that the equations of motio
can be simplified considerably for theb-relaxation process
In Sec. VIB. it will be discussed how the leading-order ter
yield a scaling-law description of theb dynamics. The range
of validity of the scaling-law description is discussed in S
VIC.

A. The equations of motion for the relaxation
near the critical plateau f q

c

Let us start with the equations of motion~20b!. The con-
ditions ~32! are then equivalent to the statement that—
addition to e—gq(t) and zgq(z) can be treated as sma
quantities. The following calculation therefore is a combin
tion of the expansion procedures carried out in Secs. II
IIIC, and VA. One arrives at the analog of Eq.~10a!

(
k

@dqk2C qk
c #@2zgk~z!#5Jq~z! . ~33a!

In analogy to Eq.~10b!, the inhomogeneity consists of tw
contributions:Jq(z)5J q

(1)(z)1J q
(2)(z). These combine the

results of Eqs.~10c!, ~21a! and ~10d!, ~21b!, respectively

J q
~1!~z!5DCq1I q

~1!~z! ,

J q
~2!~z!5(

k
DCqk@2zgk~z!#1I q

~2!~z! . ~33b!

The solution of Eq.~33a! can be written in the form of Eq
~12b!: gq(z)5g(z)eq1g̃q(z) or gq(t)5g(t)eq1g̃q(t). As
before, one shows that the partsg̃q only contribute to the
next-to-leading terms. Therefore, they can easily be ev
e

-

-

e

s

.

-
,

u-

ated and are found to consist of terms proportional to
amplitudeK̄q from Eq. ~16! and other terms proportional t
the amplitudeKq from Eq. ~23!. It is more cumbersome to
determineg(z) or g(t) from the solubility condition~12a!.
Via Eq. ~14! this term leads to a contribution proportional
the critical amplitudehq . Let us writeg(t) as a sum of a
leading-order contributionG(t) and a leading correction
g(t)5G(t)1@H(t)1s3const#. The equation of motion for
G(t) is obtained by working out the leading approximatio
of Eq. ~12a!: (qêqJ q

(1)(z)50. Remembering the definition
of the separation parameters and of the exponent paramete
l from Sec. III B one gets@6,7#

s2@zG~z!#25lzL@G~ t !2#~z! . ~34!

This result can be used to eliminate Laplace transforms
G(t)2 in terms ofG(z)2 and vice versa. One obtains

2zg̃q~z!5Kqeq
1

l Fz2G~z!22
s

12l G1K̄qeq
s

A12l
,

~35a!

g̃q~ t !5KqeqFG~ t !22
s

12l G1K̄qeq
s

A12l
, ~35b!

as well as the equation of motion forH

lL@G~ t !H~ t !#~z!1zG~z!H~z!

52jL@G~ t !3#~z!2lzzG~z!L@G~ t !2#~z! . ~35c!

The numbersj and z have been introduced above in Eq
~24! and ~25!. An equation equivalent to Eq.~35c! has been
derived before@8# for MCT models dealing with the cas
M51. The general case extends theM51 one in the defi-
nition of the two numbersj and z. The appearance of th
terms proportional toK̄q and Kq has no analogy within
M51 models.

Combining the preceding results one finds for the corre
tors in leading-plus-next-to-leading order

Fq~ t !2 f q
c5hq$G~ t !1@H~ t !1KqG~ t !21sK% q#% .

~36a!

This equation is equivalent to the formula for the dynami
susceptibility

xq~v!2~12 f q
c!

5hq$zG~z!1@zH~z!1Kq„s2z2G~z!2…/l2sK% q#% .
~36b!

Above, the new amplitudeK% q abbreviates

K% q5@K̄q2Kq /A12l1k1~lz2j!/~12l!3/2#/A12l .
~36c!

For our model one obtains:K% 153.57,K% 253.78.

B. The leading-order results

If one restricts the results~36! to the leading contribu-
tions, one obtains the factorization theorem@7#



u
e
he

r
t

s

-

ch

-

d
l.
s
t

n

s-

t
e
oni-
in
-

e

the

h-

cay
-

r

r
me

n

e

7166 55FRANOSCH, FUCHS, GO¨ TZE, MAYR, AND SINGH
Fq~ t !2 f q
c5hqG~ t ! , x q9~v!5hqx9~v! . ~37!

The deviationsFq(t)2 f q
c of the correlators from the platea

f q
c consist of two factors. Theq dependence is given by th

critical amplitudehq . The dependence on time and on t
control parameters is described by the second factorG(t).
Equivalently, the spectrumx q9(v) consists of the first facto
hq and of a second factorx9(v) which is the absorptive par
of zG(z), for z5v1 i0. The factorization theorem~37! re-
flects the center-manifold theorem of bifurcation theory@69#.
One can considerG as a function of the two variable
(t/t0) ands. This function is to be evaluated for everyl:
G(t)5gl(t/t0 ,s). The functiong has been discussed com
prehensively in the earlier literature@36,70#, and therefore
we shall quote—without proof—only those properties whi
are necessary to understand the following figures.

At the critical point, Eq.~34! yields the leading-order re
sult for the critical decay from Sec. VB

G~ t !5~ t0 /t !
a ,

x9~v!5sin~pa/2!G~12a!~vt0!
a ; s50 . ~38!

For nonvanishing separations, one obtains scaling laws

FIG. 10. ~a! Correlators 1/t̂ a ~curvec) andb-relaxation master

functions g6( t̂ ) ~curves 6) for the exponent paramete
l50.735,a50.312. The dotted lines represent the short-ti

expansionsg651/t̂ a61.12t̂ a. The dashed line exhibits the vo

Schweidler lawg2( t̂ )52Bt̂b and the dashed-dotted curve is th

expansion g2( t̂ )52Bt̂b1B1 /(Bt̂
b) (b50.583,B50.836, B15

0.431). The arrows mark the crossover timest̂6 . ~b! The suscepti-

bility spectrax̂(v̂) for the results from~a!. The arrows mark the
minimum and knee positions.
G~ t !5csg6~ t/ts! , x9~v!5csx̂6~vts! ; s:0 .
~39!

For the correlation scalecs and time scalets the following
power laws are valid:

cs5Ausu ; ts5t0 /usud , d5
1

2a
. ~40!

The control-parameter-independent master functionsg6( t̂ )
are obtained by solving Eq.~34! for s561. x̂6(v̂)/v̂ is the
Fourier cosine transform ofg6( t̂ ). These functions depen
smoothly onl. Figure 10 shows the results for our mode
The dependence ofG(t) or x9(v) on the control parameter
enters via the two scalescs and ts . The square-root resul
for the correlation scalecs is the fingerprint of the underly-
ing fold bifurcation. The exponentd for the time scale is also
fixed by l; depending on the model,d can have any value
larger than unity. For our model we obtain:d51.60.

For small rescaled timest̂5t/ts , the master functions
approach the critical asymptote

g6~ t̂ !51/t̂ a6A1 t̂
a1O~ t̂3a! ,

A15
1
2 /@G~11a!G~12a!2l# . ~41!

For our model, one findsA151.12. These formulas explai
the symmetric approach of the curves6 towards curvec for
t̂<1 in Fig. 10~a!. The corresponding approach of the su
ceptibility spectra6 towards the straight linec in Fig. 10~b!

for rescaled frequenciesv̂5vts.10 is explained byv̂
times the Fourier cosine transform of Eq.~41!.

The glass correlatorg1 approaches its long-time limi
1/A12l exponentially@49#. A characteristic crossover tim
t̂1 can be defined, for example, as one where the monot
cally decreasing correlator reaches its long-time limit with
0.1%: g1( t̂1)51.001/A12l. One obtains a regular low
frequency spectrum:x̂1(v̂)5C0v̂1O(v̂3). The crossover
from the linear susceptibility spectrum for smallv̂ to the
sublinear critical spectrum for largev̂ causes the knee of th
log10x̂1 versus log10v̂ graph in Fig. 10~b!. The knee fre-
quencyv̂K can be defined, for example, as the position of

maximum of thex̂1(v̂)/Av̂ versusv̂ graph. Let us denote
the spectral intensity for the knee byx̂K5x̂1(v̂K). For l5

0.735 one obtains:t̂153.33,v̂K54.80,C050.326,x̂K50.75.
For larget̂ , the liquid correlator approaches the von Sc

weidler law

g2~ t̂@1!52~Bt̂b!1B1 /~Bt̂
b!1O~1/t̂3b! ,

B15
1
2 /@G~12b!G~11b!2l# . ~42!

For our model, one findsB150.431. A crossover time
t̂2 can be defined, for example, by the zero of the de
function: g2( t̂2)50. The crossover from the von Sch
weidler susceptibility for lowv̂, x̂2(v̂!1)5sin(pb/2)G(1
1b)B/v̂b1O(v̂b), to the critical susceptibility spectrum fo
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high v̂ causes the minimum of the spectrumx̂2 in Fig.
10~b!. Let us denote the minimum position byv̂min and the
minimum intensity byx̂min5x̂2(v̂min). For l50.735 one
gets: t̂250.704,v̂min51.56,B50.836,x̂min51.22.

The asymptotic results~37!, ~39!—in particular, the evo-
lution of their ranges of validity with changes of the reduc
packing fractione—are demonstrated in Figs. 11 and 12.
addition to the correlators for the wave vectorq1 andq2, the
small wave vectorq0, and the large wave vectorq3 are con-
sidered@compare Fig. 2~a!#. Figure 11 shows that the func

tions „Fq(t)2f q
c
…/(hqAC)5F̂q(t) agree with the scaling

law result G(t)/AC5csg6(t/ts)/AC for n514 within
60.05 for the eight decades interval 1.5& log10t&9.5 @C is
the coefficient defined in Eq.~13!#. Similarly, Fig. 12 shows
that for n514 the functionsx̂q(v)5x q9(v)/(hqAC) agree
with x9(v)/(AC)5csx̂6(vts)/AC within 10% for the four
decade interval28.5& log10v&24.5. Notice that the rescal
ing of the master spectrum is achieved in the double lo
rithmic representation of Fig. 12 by a mere translation of
plot without change of shape: the dashed lines are obta
by translating the graphs from Fig. 10~b! by log10(cs /AC)
parallel to the vertical axis and by log10ts parallel to the
horizontal one. If the separation parameter is increased
factor 10, the ranges of validity of Eqs.~37!, ~39! shrink by
more than a factor 100 as is shown for then511 results in
Figs. 11 and 12. A further increase of the separation by

FIG. 11. FunctionsF̂q(t)5(Fq(t)2 f q
c)/(hqAC) for q053.4,

q157.0,q2510.6, andq3517.4 fore56102n/3 for three values of
n ~solid lines with labels 0 to 3). The diamonds mark the positio

where theF̂q(t) deviate by60.05 from the scaling asymptote
G(t)/AC, which are shown as dashed curves.C51.54 and the
curves fore.0 are shifted downwards by 1, for clarity.
-
e
ed

a

n-

other factor 10 is analyzed for then58 results in those fig-
ures. The asymptotic laws now hold for a 3.5 decade ti
window, i.e., for 1.5& log10t&5.0 within 60.05. In the fre-
quency domain, a similar shrinking of the window for th
applicability is demonstrated. For the two wave vectorsq1
andq3, the susceptibility spectra of the liquid deviate alrea
qualitatively from the master spectrumx̂2 . For then58
results, the glass spectra deviate for all wave vectors
frequencies from the master spectrum by more than 10%

In connection with Fig. 7~a!, characteristic timest q
6 have

been defined, which quantify the crossover timestco from
the first to the second relaxation step. Corresponding tim
t̂6 have been defined above for the correlatorsg6( t̂ ). Within
the range of validity of the leading-order results one obta
from the scaling laws Eq.~39!, the formula

t q
65 t̂6ts . ~43a!

It is the factorization theorem which explains theq indepen-
dence of the scalest q

6 in the limit s→0, which was dem-
onstrated in Fig. 7~c!. The strong increase of the scale
which is shown in Fig. 7~a! for usu→0, is a consequence o
the power-law divergence obtained forts in Eq. ~40!. The
lines through the diamonds in Fig. 7~a! exhibit the result
~43a! for our model. Equivalent results are obtained if o
considers the positionsvmin(q) andvK(q) of the suscepti-
bility minima and knees. Again, one finds these quantities

s

FIG. 12. The spectrax̂q(v)5x q9(v)/(hqAC) for the results
from Fig. 11~solid lines!. The diamonds mark the points where th

x̂q(v) deviate by 10% from the scaling-law asymptot

x̂(v)/AC, which are shown as dashed curves. The curves
e.0 are shifted downwards by one decade, for clarity.
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be q independent within the range of validity of the facto
ization theorem as is shown in Fig. 13~a!. Compressing the
liquid towards the critical packing fractionwc manifests it-
self by an approach ofvmin(q) to zero. Similarly, the melt-
ing of the glass upon expansion is reflected by a vanishin
vK(q). The scaling laws~39! yield the power-law results

vmin~q!5v̂min /ts , vK~q!5v̂K /ts . ~43b!

The asymptotic laws are shown as lines in Fig. 13~a!. The
power-law singularities for the frequency scales are m
explicit in a rectification diagram, i.e., in av2a versusw
representation. Within the range of validity of the leadi
asymptotic formulas, one obtains a linear variation with
reduced packing fraction

vmin~q!2a5@v̂min /t0#
2aC~wc2w!/wc , w,wc ,

~44a!

vK~q!2a5@v̂K /t0#
2aC~w2wc!/wc , w.wc . ~44b!

FIG. 13. ~a! Positions of the susceptibility minimavmin(q) and
kneesvK(q) for w,wc andw.wc , respectively. The squares refe
to q1 and the diamonds toq2. The solid lines are the scaling-law

asymptotes@v̂min /t0#usud, @v̂K /t0#usud, d51.60. The circles are
the susceptibility maxima positionsvmax(q2), and the line shows
the power-law asymptotevmax53.74usug; g52.46. ~b! v min

2a and
v K

2a for the data from~a! in comparison with the leading-orde
results, Eqs.~44! ~straight lines!; a50.312. The circles arev max

1/g

for the data from~a! together with the straight line asymptote.~c!
@x q9(vmin)/(2hq)#

2 and @x q9(vK)/hq#
2 as function of the packing

fraction for the data from Fig. 6. The straight lines are the scali
law asymptotes from Eqs.~45!; squares refer toq1, and diamonds to
q2.
of

e

e

The results forvmin(q)
2a andvK(q)

2a are compared with
the asymptotic straight lines in Fig. 13~b!.

The fold bifurcation also manifests itself by a vanishin
of the spectral intensities at the minimum and knee prop
tional to the universal square-root law

xmin~q!5hqx̂mincs ; xK~q!5hqx̂Kcs . ~45a!

Again, the singularity is exhibited more transparently
considering a rectification diagram, i.e., a plot of the squa
of the intensities

@xmin~q!/hq#
25@ x̂min#

2C~wc2w!/wc , w,wc ,
~45b!

@xK~q!/hq#
25@ x̂K#2C~w2wc!/wc , w.wc . ~45c!

In Fig. 13~c!, the results for (xmin /hq)
2 and (xK /hq)

2 are
compared to the asymptotic straight lines, showing the rig
hand side of Eqs.~45!.

-

FIG. 14. Master functionsh( t̂ ) as function of the rescaled tim

t̂5t/ts ~a! and the master susceptibility spectrav̂h9(v̂) as function

of the rescaled frequencyv̂5vts ~b! for the corrections to the
b-relaxation scaling laws forl50.735, j50.0422, z50.269.
Curvesc refer to the critical point and curves6 to glass and liquid,
respectively. The dotted lines in~a! exhibit the asymptotic laws

h6520.00165/t̂2a72.48. The dashed-dotted line is the appro

mation h2( t̂ )5k(2b)(Bt̂b)21k̃(2b), where k(2b)50.569,
k̃(2b)52.97,B50.836. The dashed lines represent the asymp

h2( t̂ )5k(2b)(Bt̂b)2. The arrows are the markers from Fig. 10.
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C. The leading corrections to the scaling laws

The range of validity of the scaling-law description of th
dynamics isq dependent, as is obvious from Figs. 11–1
Theq dependence is determined bysK% q and the terms pro-
portional toKq in Eqs.~36!. SinceG(t)

25c s
2g6(t/ts)

2, the
G2 terms are also given by scaling laws; the time scale is
samets as discussed above, but the amplitude scale is
duced fromcs to c s

25usu. With H(t) a new function enters
Its equation of motion can be noted in a convenient form
Laplace backtransformation of Eq.~35c!

lG~ t !H~ t !2~d/dt!E
0

t

G~ t2t8!H~ t8! dt8

5lz~d/dt!E
0

t

G~ t2t8!G~ t8!2 dt82jG~ t !3 . ~46!

The solution forw5wc , which reproduces via Eq.~36a! the
results of Sec. VB for the critical relaxation, reads
n

s

q
ng

m
s

ep
th

g

rr
ll

th
.

e
e-

y

H~ t !5k~a!~ t0 /t !
2a ; s50 . ~47!

Here,k(x) was defined in Eq.~26!. For nonvanishing sepa
rations, the scaling laws~39! for G(t) imply corresponding
results forH

H~ t !5c s
2h6~ t/ts! ; s:0 . ~48!

The s-independent master functionsh6( t̂ ) are given by
l,j,z. They can be evaluated from Eq.~46! with G(t) re-
placed by g6( t̂ ). Figure 14 exhibits the results for ou
model.

The properties of the functionsh6 can be understood by
working out asymptotic expansions along the same lines
done before forg6 @70#. The short-time expansion~41!
yields a corresponding result for the new master function

h6~ t̂ !5k~a!/ t̂2a7k̃~a!1O~ t̂2a! , ~49!
k̃~x!5
k~x!@G~11x!G~12x!2l2#/l23j1z@2l1G~11x!G~12x!#

2~12l!@G~11x!G~12x!2l#
. ~50!
-

n
tor
m

For our model one findsk̃(a)52.48. These results explai
the deviations ofh6 from the critical law~47!, which are
shown in Fig. 14~a! for t̂&0.1. For long times the glas
correlator approaches a constant:h1( t̂→`)5(j2lz)/
(12l)2. Equation ~42! leads to the long-time power-law
divergence for the liquid correlator

h2~ t̂ !5k~2b!~Bt̂b!21k̃~2b!1O~ t̂22b! . ~51!

For our model one obtainsk̃(2b)52.97.
Substitution of the found scaling-law results into E

~36a! yields the results for the leading-plus-next-to-leadi
approximation of the correlator fors:0
.

Fq~ t !2 f q
c5hqcs$g6~ t/ts!1cs@h6~ t/ts!

1Kqg6~ t/ts!26K% q#% . ~52a!

For fixed rescaled timest̂5t/ts , the corrections to the lead
ing asymptotic laws vanish proportional toAueu. The correc-
tion csh6( t̂ ) does not lead to a violation of the factorizatio
theorem; it can be interpreted as a modification of the fac
G in Eq. ~36a!. The corrections to the factorization theore
are given by the termscsKqg6

2 andcsK% q . A corresponding
result can be derived from Eq.~36b! for the dynamical sus-
ceptibility
xq~v!2~12 f q
c!5hqcs$~zts!g6~zts!1cs@~zts!h6~zts!2Kq~zts!2g6~zts!2/l1Kq /l7K% q#% . ~52b!
an

m
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The solid lines in Fig. 15~a! reproduce the decay curves fro
Fig. 4 for n59, i.e., for reduced packing fraction
e560.001, and Fig. 15~b! shows the results forn56, i.e.,
for e560.01. Figure 16 exhibits the corresponding susc
tibility spectra. The dashed lines in Figs. 15 and 16 show
scaling law approximation~37! and ~39!, while the dashed-
dotted lines exhibit the leading-plus-next-to-leadin
approximation results Eqs.~52!.

The deviations of the asymptotic solutions from the co
elatorFq(t) increase if the rescaled timet̂ decreases to sma
values. But—according to Figs. 10~a! and 14~a!—for
t̂,0.01 all functions become very close to the results for
-
e

-

-

e

critical point. Therefore the results for these deviations c
be inferred from the discussion for thee50 case in Sec. VB.
In Fig. 15—as opposed to in Fig. 8~a!—error symbols mark
the absolute deviations of the analytic approximation fro
the full solutions by60.05. The incorporation of the leadin
corrections extends the range of validity of the analytic f
mulas by about one order of magnitude. The figures confi
the conclusion which was drawn above from Fig. 8~a!: Eq.
~52a! describes the short-time dynamics except for that
tial part, which is given by the free motionF q

(0)(t). Similar
results hold for the approximation of the high-frequency p
of the susceptibility spectra. The analytical formulas wo
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much better for the wave vectorq2 than forq1. The reason
was explained above in connection with Fig. 8. Notice
Fig. 16~a! that, for q1 and e50.001, the leading-order ap
proximation deviates from the correct spectrum by more t
10% for all frequencies. A corresponding statement holds
q1 andq2, for the e50.01 results in Fig. 16~b!.

For the glass curves, the deviations of the approximati
from the solutions decrease with increasing time. The cor
tions to the scaling-law asymptote of the long-time limit, E
~15!, are much bigger forq1 than forq2. This is shown in
Fig. 15 and was explained above in connection with Fig
As before, one shows that the low-frequency spectra for
glass are regular. Therefore, one gets from Eq.~52a! the
result: x q9(v)5hqcs$C01Dqcs1O(s)%(vts)1O(v3) for
e.0. The scaling-law coefficientC0 is given by the regular
low-frequency behavior of the master susceptibil
x̂1(v̂→0);C0v̂. The leading corrections to the linear su
ceptibility spectrum are given by a coefficient, for which E
~52a! yields a q dependence of the form:Dq

5D12KqC0 /(lA12l). For our modelD520.186. The
q dependence ofKq , which was explained above in Sec. V
and which is exhibited in Fig. 2~c!, is the reason, why the
corrections are bigger for q1 than for q2:
D1521.94,D2520.501. These findings are demonstrat
most clearly in Fig. 16~b!.

The discussion of the liquid dynamics near the bifurcat
singularity is more subtle than the one for the glass. Thi
due to the von Schweidler divergence for larget̂ , Eq.~42!. In

FIG. 15. The correlators from Fig. 4 fore561023 @n59 in
~a!# and e561022 @n56 in ~b!# are shown as solid lines. Th
dashed lines are the leading-order asymptoticb-relaxation results
@Eqs. ~37!, ~39!, and ~40!#; the diamonds mark the points whe
they deviate from the solution by60.05. The dashed-dotted line
are the leading-plus-next-to-leading approximation Eq.~52a!; the
circles mark the points where they deviate from the solution
60.05.
n
r

s
c-
.

.
e

.

n
is

the expressioncsB(t/ts)
b, one can combine the power law

for cs and (1/ts) Eq. ~40!, to a new power-law time scale

t s85t 08/usug , t 085t0 /B
1/b , g5

1

2a
1

1

2b
. ~53!

For our model one finds:t 0850.578,g52.46. Remembering

the von Schweidler lawg2;2Bt̂b and the corresponding
result h2;k(2b)(Bt̂b)2 from Eq. ~51!, one obtains from
Eq. ~52a! for the asymptote of theb-relaxation liquid corr-
elator for larget̂5t/ts

Fq~ t !2 f q
c52hq~ t/t s8 !b$12@Kq1k~2b!#~ t/t s8 !b% ,

e,0 . ~54!

On the other hand, in Sec. VC, the solutions have been c
sidered fore→02 for fixed t̃5t/t s8 . If one compares the
result ~30a! with Eq. ~54!, one identifies the previously un
specified time scalet s8 for thea process with the power-law
scale from Eq.~53!.

According to the preceding paragraph, the relaxation
the liquid for times long on scalets , t̂5t/ts@1, is identical
with the relaxation below the plateauf q

c for times short on
scale t s8 , t̃5t/t s8!1. The relation of the analytic

b-relaxation results to the solutions for larget̂ and smallv̂
can therefore be inferred from the discussion of Fig. 9 in S
VC.

The scaling-law result describes the decay ofF2(t) near
the plateau fore520.001 well for a time window of abou

y

FIG. 16. The susceptibility spectra for the results in Fig. 1
Diamonds and circles mark the points of 10% deviations from
spectra for the leading and leading-plus-next-to-leading asymp
formulas, respectively. Notice that fore50.01 the approximations
deviate for all frequencies by more than 10% from the solution
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55 7171ASYMPTOTIC LAWS AND PREASYMPTOTIC . . .
five and a half decades, as follows from Fig. 15~a!. The
approximation of the minimum ofx 29(v) by the master
spectrum only works for a three decade frequency wind
as shown in Fig. 16~a!. A similar observation holds for the
leading-plus-next-to-leading asymptotic results: F
e520.01, the decay ofF1(t) is described for a time win-
dow of about four decades, as shown in Fig. 15~b!. Figure
16~b! demonstrates that the corresponding approximation
the susceptibility spectrum works for a frequency window
two decades only. The window for the applicability of th
asymptotic laws is larger in the time domain than in t
frequency domain. This implies that it is easier to ident
the scaling laws forFq(t) versus log10t diagrams than for
log10x q9(v) versus log10v graphs. The reason is the appea
ance of the factorska andkb for the correction terms in Eqs
~27b! and ~30b! as was explained in Secs. VB and VC
respectively.

VII. THE SECOND SCALING-LAW REGIME

The first scaling law and its leading corrections deal w
the dynamics on scalets , Eq. ~52a!. For w.wc , the corr-
elators arrest fort/ts@1 and therefore the results of Secs.
and VI provide a complete description of the MCT bifurc
tion dynamics of the glass state for smallw2wc . However,
for w,wc , there is the second relaxation step towards eq
librium, which deals with the dynamics on scalet s8 . After
yet another reformulation of the equations of motion~Sec.
VIIA !, a scaling law for thea process—the superpositio
principle—will be derived as leading-order asymptotic res
~Sec. VIIB!. Then leading corrections to this law will b
discussed in Sec. VIIC.

A. The equations of motion for thea process
near the critical point

Let us introduce rescaled timest̃ and frequenciesz̃,ṽ in
the scale invariant equation~19! as done before
t̃5t/t s8 ,z̃5zts8 ,ṽ5vt s8 . To study the dynamics on sca
t s8 , we carry out an asymptotic expansion for small negat
reduced packing fractionse

Fq~ t !5F̃q~ t̃ !1e~12 f q
c!2C̃q~ t̃ !1O~e2! . ~55!

The expansion of the mode-coupling functional, Eq.~2!, is
given by the following coefficients:

Cq~ t̃ !5F q
c
„F̃~ t̃ !… , C q8~ t̃ !5]F q

c
„F̃~ t̃ !…/]e ,

~56a!

Cqk~ t̃ !5@]F q
c
„F̃~ t̃ !…/] f k#~12 f k

c!2 . ~56b!

Because ofF̃q( t̃→0)5 f q
c , these functions have as initia

values the numbersCq
c ,Cq8

c and Cqk
c , respectively, which

have been introduced in Eqs.~9!. Specializing Eq.~19! to
e50, one finds the nonlinear equation of motion for t
leading-order contributionF̃q @68#

F̃q~ z̃!/@11 z̃F̃q~ z̃!#5Cq~ z̃! . ~57!

For the leading correctionC̃q the linear equation of motion
is obtained
,

r

r
f

-

i-

t

e

~12 f q
c!2C̃q~ z̃!/@11 z̃F̃q~ z̃!#2

5C q8~ z̃!1(
k
L@Cqk~ t̃ !C̃k~ t̃ !#~ z̃! . ~58!

B. The leading-order results

If one ignores terms of ordere, one gets from Eq.~55!
scaling laws for the correlators and susceptibilities

Fq~ t !5F̃q~ t/t s8 ! ; xq~v!5x̃q~vt s8 ! . ~59!

The control-parameter-independent master functionsF̃q( t̃)
andF̃q( z̃) are to be determined from Eq.~57!, which is the
Laplace transform of Eq.~29! from Sec. VC. The suscepti
bility master function is related to the Laplace transform
the correlator by:x̃q(ṽ)5 z̃F̃q( z̃)1 f q

c , z̃5ṽ1 i0. Within
the leading-order description, the sensitive dependence o
long-time or low-frequency liquid dynamics is thus caus
entirely by the singularly varying time scalet s8 from Eq.
~53!.

If the correlatorsFq for thea process are considered a
functions of the rescaled timest̃, they coincide for alle with
the common master curveF̃q . Equivalently, if the suscepti-
bilities xq are considered as functions of the rescaled f
quenciesṽ, they are superimposed for all control paramet
w onto the common master susceptibilityx̃q . Therefore, the
scaling laws~59! are referred to as the superposition pri
ciple, which is a concept from the glass literature@1#. This
principle is obtained as leading asymptotic result for t
MCT a process in the limitw→wc2. The precise formula-
tion is the interval of rescaled timest̃, where theFq( t̃) can
be superimposed onF̃q( t̃), expands to arbitrary sizes fo
e→02. This is demonstrated in Fig. 17 for our model. Sim
larly, the interval of rescaled frequenciesṽ, wherexq(ṽ)
coincides with the master susceptibilitiesx̃q(ṽ), expands for
decreasing2e, as is shown in Fig. 18. The rescaling, i.e., t
replot of the results as functions of log10t̃ or log10ṽ instead of
as functions of log10t or log10v, respectively, is done by a
shift of the curves parallel to the abscissa by6 log10t s8 .

In Sec. IV, a-relaxation scalest q
851/vmax(q) and t̄ q8

have been introduced. Let us define in a similar man
ṽmax(q) as the peak position of thex̃ q

9 versusṽ graph and
t̃ q8 by F̃q( t̃ q8)5 f q

c/2. For our model, one finds forq1:
ṽmax150.474,t̃ 1851.17 and for q2: ṽmax252.16,t̃ 28
50.205. Within the range of validity of the leading-ord
result ~59!, one gets

t q
85t s8 /ṽmax~q! ; t̄ q85t s8 t̃ q8 . ~60!

The superposition principle explains that there is only o
a scalet s8 . The scalest q

8 or t̄ q
8 quantify the slowing down

of the dynamics upon freezing. These scales depend on
correlator under discussion. But different scales differ o
by e-independent prefactors 1/ṽmax(q) andt̃q , respectively.
In Fig. 7~a!, the asymptotic power law fort 28 is shown to
describe the solution well forn>5. The corresponding state
ment is demonstrated in Figs. 13~a! and 13~b! for vmax2.
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It was discussed in Sec. VC that thea process deals with
a crossover from the von Schweidler shortt̃ expansion to
exponential decay at long times. As a result the stretchea
peak of the susceptibility spectrum comes about due to
crossover from a regular lowṽ spectrum to a von Sch
weidler highṽ decay. Thea-relaxation timestq or t̄q ex-
hibit characteristic variations as a function of the wave v
tor q and so do the stretching properties, as has b
discussed comprehensively for the hard-sphere system
Ref. @59#.

C. The leading correction to the second scaling law

It was shown in Sec. VIC that the leading corrections
the first scaling-law results are of relative orderueu1/2. If we
stick to the same degree of accuracy for the description
thea process we can use Eq.~59!. There are no correction
to the second scaling-law results of orderueu1/2. For fixed t̃,
the corrections to the second scaling law are only of or
ueu. This observation explains, why the implications of E
~59! still hold for such largee, where the first scaling-law
results are no longer applicable. For example, one in
from Fig. 18 that the second scaling-law results describ
major part of thea process fore521025/3 andq5q1. On
the other hand, it follows from Fig. 16~b! that the first scaling
law is only of limited use, if at all, to describe the spectra
theb process fore521026/3.

With decreasingt̃, the functionsFq( t̃) increase above the
maximumf q

c of F̃q( t̃) as is shown in Fig. 17. Similarly, with

FIG. 17. CorrelatorsFq for the reduced packing fraction
e52102n/3, n51,3,5,7,9 as function of the rescaled tim
t̃5t/t s8 with t s8 given by Eq.~53! ~solid lines!. The thick solid lines
are thea-relaxation master functionsF̃ obtained from Eq.~29!.
The dashed lines are the short-time parts of the leading-plus-n
to-leading approximation for thea correlatorsF̃q( t̃)1hqB1s t̃

2b.
e

-
n
in

of

r
.

rs
a

f

increasingṽ the rescaled susceptibility functionsx q9(ṽ) or
x q8(ṽ) increase above the master spectra or decrease b
the plateau 12 f q

c , respectively, as is demonstrated in Fi
18. These deviations from the second scaling laws for tim
short on scalest s8 or frequencies large on scale 1/t s8 , respec-
tively, are caused by the correction terme(12 f q

c)2C̃q in Eq.
~55!. The equation of motion~58! can be solved for smallt̃
by expansions in powers oft̃ b, following the same procedure
as explained in the preceding sections. One gets

Fq~ t !5F̃q~ t̃ !1hqB1s t̃
2b1sO~ t̃ 0,s! . ~61!

The critical amplitudehq is the one from the factoriza
tion theorem~37! and coefficientB1 occured in Eq.~42!
during the discussion of the first scaling-law results. T
dashed lines for shortt̃ in Fig. 17 exhibit the sum of
the leading contributionF̃q( t̃) and the second term of Eq
~61! as dashed lines for shortt̃; Fig. 18 shows the corre
sponding results for the susceptibilities. It has been explai
in Sec. III that the ratiohq / f q

c is smaller for wave vectors
near the structure-factor-peak position than forq off this
value@compare Fig. 2~b!#. This observation explains why th
second scaling law works better forq1 than forq2.

Let us consider the result~61! for small t̃. Then, the
sO( t̃ 0) term can be neglected and the scaling funct
F̃q( t̃) can be replaced by the von Schweidler law, i.e., by
leading terms in Eq.~30a!

Fq~ t !5 f q
c2hq$ t̃

b2B1s t̃
2b% . ~62a!

FIG. 18. Susceptibilities for the results from Fig. 17 as functio
of the rescaled frequencyṽ5vt s8 .
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If one remembers the definitions oft s8 in Eq. ~53! and of
cs ,ts in Eq ~40!, one can rewrite the result as

Fq~ t !5 f q2hqcs$Bt̂b2B1 /~ t̂
bB!% , ~62b!

wheret̂5t/ts . It was known from a previous work@68# that
the leading expansion of thea correlator for
t̃!1,Fq(t); f q

c2hqt̃
b, agrees with the leading expansion

the first scaling law fort̂@1,Fq(t); f q
c2hqcsBt̂

b. The for-
mulas~62! extend these findings so that the next-to-lead
terms are included. The correction of orders to the second
scaling law for times short on scalet s8 is given by the last
term in Eq.~62a!. And this agrees with the next-to-leadin
term for times long on scalets , as given by the expansion o
the first scaling law in Eq.~42!.

VIII. SUMMARY AND CONCLUSIONS

In this paper we presented a comprehensive discussio
thea- andb-scaling laws, which are two of the central pr
dictions of the MCT. As a result of a bifurcation analysis t
factorization property can be derived: In theb-relaxation
region the time dependence of the correlation functions
given by a single functionG which obeys a one-paramete
scaling law, Eqs.~39! and~40!. The wave-vector dependenc
enters only via the critical form factorf q

c and the critical
amplitudehq . In Figs. 11 and 12 the rescaled correlators a
susceptibility spectra of the hard-sphere model are comp
with the master function. The diamonds mark the time a
frequency windows were the scaled curves are well
scribed by the asymptotic formulas. Let us emphasize
Figs. 11 and 12 present a hard test of the asymptotic la
because all the parameters that enter Eqs.~37!–~40!, except a
single time scalet0, have been calculated not fitted. The
figures can be easily interpreted if one considers that
b-scaling law is the leading order of an asymptotic exp
sion about the critical plateauf q

c in the vicinity of a glass
transition. This implies that for a system near a glass tra
tion singularity the scaled curves should collapse onto
master function as soon as they come close tof q

c . If the
system is moved towards the glass transition the wind
where the correlators remain near the plateau expands—
so does the range of validity of the factorization theorem a
of the scaling laws. The verification of this behavior is
essential part of a proper MCT analysis of experimental d
~see, e.g., Refs.@19,20#!.

The factorization theorem does not hold uniformly wi
respect to wave-vector variations. For a given wave-vec
modulusq and a given number of time decades, there i
positivee0, so that Eqs.~37!–~40! hold for all reduced pack-
ing fractionse5(w2wc)/wc , with ueu,e0. However, fore
Þ0 no matter how smallueu may be, one can find aq so
small, that theb-scaling law becomes invalid, because it
tarnished by the hydrodynamic singularities. For our ha
sphere colloid model we found that theb-relaxation scaling
laws describe the dynamics for a wave-vector ba
q0<q<q3 and ueu<1024 in a time window of more than
five orders of magnitude.

The arguments given above for the correlators can be
plied to the spectra in Fig. 12, if one notices that the reg
g
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close to the plateau corresponds to the region in the vici
of the minimum or the knee for liquid or glass curves, r
spectively. Again, it is important for an experimental test
the theory to demonstrate that the range of validity shrin
with increasing distance from the glass transition~see, e.g.,
Refs.@11,31,32#!. For the wave-vector band and the packi
fractions specified above,b scaling holds for more than thre
decades in the frequency domain. The factorization of
spectra implies, for example, that the position of the mini
of various susceptibility spectra should coincide. This pro
erty was verified for a set of four representative wave vect
by neutron-scattering studies for the mixed salt CKN@71#.
Within MCT, one can show that the susceptibilitiesxA(z)
for all variablesA which couple to density fluctuations obe
the factorization theorem as asymptotic law@37#. Indeed it
was shown@39# that the susceptibility spectrax A8 (v) ob-
tained by depolarized light scattering for CKN, exhib
minima in agreement with the ones reported for neutron s
tering. Apparently for the cited system and the mention
probing variables, the preasymptotic corrections are ra
small. Minima positions for Salol as obtained by light sca
tering have been compared with those obtained by neu
scattering in Ref.@33#. In that case, the results were simil
to what was discussed for Fig. 13~a!: for large temperature
T the minimum positions differed but they converged to t
same frequencies upon loweringT towards the critical value
Tc .

Figures 11–13 demonstrate that the correlators dev
differently from the master curves, depending on the wa
vector, and therefore the window of validity of th
b-scaling law isq dependent. This effect can be seen ev
more dramatically for the susceptibilities shown in Fig. 16~a!
for e520.001: The minimum positions and the slopes ag
reasonably well forv<vmin . For v.vmin , the spectrum
for q2 follows the master spectrum for more than a deca
frequency increase. However, the spectrum forq1 differs
strongly from the leading result forv.vmin ; it looks as if
there was a critical spectrum specified by an effective ex
nent aef f , which is considerably smaller than the valuea.
For e520.01, the susceptibilityx 19(v) in Fig. 16~b! does
not exhibit a minimum at all, even though there is a w
developeda peak. The anomaly noticed fore520.001 can
thus be understood as precursor for the disappearance o
minimum for large separations from the critical point. Noti
that the minimum shape for the susceptibilityx 29(v) can still
be described well by the scaling-law master spectrum
e520.01.

The need to broaden our understanding of the deviati
from theb-scaling law made it appear worthwhile to pus
the asymptotic expansion to the next-to-leading order.
could demonstrate that the leading corrections extend
range of validity of the first-order approximation at and o
the critical point substantially and can therefore serve as
explanation for the deviations mentioned above~see Figs. 3,
8, 9, 15, and 16!. They can explain, in particular, the shi
@Fig. 16~a!# and the disappearance@Fig. 16~b!# of the suscep-
tibility minimum.

The appearance of wave-vector dependent amplitu
Kq andK% q in the next-to-leading-order terms, Eqs.~52!, im-
plies that the corrections spoil the factorization property, i
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the deviations from the scaling law results areq dependent.
Close to the glass transition singularity the dominant effe
are the short-time corrections to the critical law and the lo
time corrections to the von Schweidler law, which were d
cussed in Secs. VA, VB. This knowledge has also been u
to explain why the window of validity of theb-scaling law is
much smaller in the frequency domain than in the time
main. This effect, noticed previously by Kob and Anders
in connection with a MCT analysis of computer simulati
data~see Fig. 14 in Ref.@72#!, depends only on the value o
the exponent parameterl. For our model the windows diffe
by nearly two orders of magnitude.

Further, we could prove that the long-time corrections
connected with the short-time corrections@Eqs. ~27! and
~30!#. As a consequence, the numbers labeling the sc
correlators in Fig. 11 are in the same order from top to b
tom on the short-time side as on the long-time side. Exp
ments on hard-sphere colloids are consistent with this c
clusion~see Fig. 14 in Ref.@20#!. Suppose corrections to th
scaling law have been measured for some correlator for s
and long times. With Eqs.~27! and~30! one can then deter
mine the numberk(a)2k(2b). If one now measures th
short-time corrections for some other correlator, sayFq , one
can determineKq1k(a). Then one knowsKq1k(2b) and
thereby the long-time corrections. Consequently, our res
provide a quantitative prediction which holds for every MC
model. Analogous results hold for the susceptibility spec
in Fig. 12.

The corrections depend on the details of the mo
coupling functional of the investigated system via the para
etersKq , K̄q , z, j, andk just as the leading-order resul
depend on the particular model viaf q

c , hq, andl. This is
since the cage effect, which is the common origin for t
bifurcation scenario predicted by the MCT, depends on
short-distance interactions between the atoms or molecu
Nevertheless, we were able to explain the general tenden
for variations withq displayed by f q

c , hq , and Kq , and
thereby reach a qualitative understanding of the results
the hard-sphere model. The theory can be trivially exten
to one dealing with mixtures@68#, and one can obviously
generalize the formulas for the leading corrections in
same way as it has been done in the case of the leading-o
results @73#. It would be desirable to carry out an explic
discussion of the formulas for representative mixtures in
der to see whether a qualitative understanding of mixt
results can be achieved as well.

The corrections to thea-scaling law cannot be calculate
in the same manner as the corrections to theb-scaling law.
We could only derive analytic formulas for the short-tim
corrections, which are in fact identical to the short-time c
rections to the von Schweidler law of theb-scaling theory.
Despite these difficulties a general result can be found:
leading-order corrections toa scaling are of higher order in
the separation parameter than the leading correctionsb
scaling. That is why the superposition principle still wor
quite well for separations where the factorization prope
does not hold any more~compare then57 andn59 results
in Fig. 18 with then58 ones in Fig. 12!.

All results in this paper have been obtained from Eq.~19!,
which deals with a dynamical regime where transient effe
ts
-
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have died out. The derived analytical formulas for the so
tion of the MCT equations of motion deal with structur
relaxation only, which, except for the time scalet0, is en-
tirely determined by the mode-coupling functional, Eq.~2!.
However, there may be interesting slow dynamical proces
due to the transient, which can interfere with the structu
relaxation. Thereby, they can also cause preasymptotic
rections to the bifurcation dynamics. But these correctio
are not considered in our paper. Studying the crossover f
slow transient dynamics to the structural relaxation may
important for an interpretation of data or of MCT solution
The hydrodynamic singularities which were mention
above, are obvious examples for such preasymptotic cor
tions. Let us also mention two less obvious ones. First,
additional time fractal, expected for hard-sphere syste
had to be incorporated to interpret within the MCT forma
ism the shear dynamics of a colloidal suspension@21#. Sec-
ond, conventional liquids exhibit phononlike excitation
@51,52#, whose bare dispersion law enters the MCT equat
of motion, Eq.~1!, asVq . MCT predicts that such excita
tions are also present in the glass@36,68#. These oscillations
may mask, for example, the critical decay, as was discus
in Ref. @14#.

The concept of spontaneous arrest of fluctuations in a
ordered system is an idealization. The singular transition
an ideal glass state, as obtained within the idealized M
results from the assumption, that fluctuating forces couple
density-fluctuation pairs whose motion can be treated b
factorization ansatz. If one takes into account also coup
to currents, one obtains an extended MCT, where ergodi
is restored for allT and n so that correlation functions al
ways relax to zero@74,75#. The current modes play the rol
of phonons and the indicated relaxation mechanism appr
mately describes transport via phonon-assisted hopping.
result, the bifurcation singularity is bypassed and the singu
transition is replaced by a continuous crossover. There st
a b regime, where the factorization theorem~37! describes
the dynamics in leading order. But the functionG(t) now is
to be calculated from a two-parameter scaling law@75,76#.
This extendedb-relaxation theory has been used@32,77,78#
for data interpretation with the intention to explain devi
tions from the scaling laws of the idealized MCT. Th
avoided singularity of the extended MCT does not anym
separate liquid states from ideal glass states, but still is
origin of the stretched dynamics and the strong density
temperature dependence of the time scales. The exte
b-scaling law explains the crossover from the dynamics ty
cal for disordered solid, i.e., thermally activated processes
dynamics characteristic for a liquid, i.e., cage and backfl
effects. At present, it is unclear whether our methods
also be applied to derive, within the extended MCT, pre
ymptotic correction formulas for the mentioned tw
parameter scaling law.
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Lüscher, G. Fritsch, and G. Jacucci~Martinus Nijhoff, Dor-
drecht, 1987!, p. 34.

@69# S.-N. Chow and J. K. Hale,Methods of Bifurcation Theory
~Springer-Verlag, Berlin, 1982!.

@70# W. Götze, J. Phys. Condens. Matter2, 8485~1990!.



s.

7176 55FRANOSCH, FUCHS, GO¨ TZE, MAYR, AND SINGH
@71# W. Knaak, inDynamics of Disordered Materials, edited by D.
Richter, A. Dianoux, W. Petry, and J. Teixeira~Springer-
Verlag, Berlin, 1989!, p. 64.

@72# W. Kob and H. C. Andersen, Phys. Rev. E52, 4134~1995!.
@73# J.-L. Barrat and A. Latz, J. Phys. Condens. Matter2, 4289

~1990!.
@74# S. P. Das and G. F. Mazenko, Phys. Rev. A34, 2265~1986!.
@75# W. Götze and L. Sjo¨gren, Z. Phys. B65, 415 ~1987!.
@76# M. Fuchs, W. Go¨tze, S. Hildebrand, and A. Latz, J. Phy
Condens. Matter4, 7709~1992!.

@77# J. Baschnagel and M. Fuchs, J. Phys. Condens. Matter7, 6761
~1995!.

@78# H. Z. Cummins, W. M. Du, M. Fuchs, W. Go¨tze, S. Hilde-
brand, A. Latz, G. Li, and N. J. Tao, Phys. Rev. E47, 4223
~1993!.


