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Asymptotic laws and preasymptotic correction formulas for the relaxation
near glass-transition singularities
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Within the mode-coupling theorfMCT) for the dynamics of simple liquids, the leading corrections to the
asymptotic solutions for the relaxation in the vicinity of an ideal glass transition are derived. The formulas are
used to determine the range of validity of the scaling-law description of the MCT results far drel 8
processes in glass-forming systems. Solutions of the MCT equations of motion are calculated for a hard-sphere
colloidal suspension model and compared with the derived analytical results. The leading-order formulas are
shown to describe the major qualitative features of the bifurcation scenario near the transition and the leading-
plus-next-to-leading-order formulas are demonstrated to give a quantitative description of the evolution of
structural relaxation for the modgiS1063-651X97)06005-4

PACS numbd(s): 64.70.Pf, 61.20.Lc

[. INTRODUCTION pensions[16-21. These mathematical and experimental
findings appear as a justification to consider the MCT as a
Glass-forming liquids develop structural-relaxation dy-candidate for a theory of structural relaxation.
namics if they are cooled or compress$édl An outstanding Originally, the MCT was proposed as a schematic treat-
feature of this relaxation is the stretching of decay functionament of glass transitiof22], as an approximation theory for
@ over large windows of time, or equivalently, the stretch- the cage effect in simple liquid23], and as a self-consistent
ing of spectra over huge windows of frequeney Further-  one-loop approximation for a fluctuating-hydrodynamics
more, the characteristic time scaledor the dynamics can model [24]. The new findings of the MCT result from a
shift over several orders of magnitude if the temperalfucg ~ bifurcation singularity, which leads to an unconventional dy-
the particle densityr are altered by, say, 20%. The strong namics. Upon loweringl or increasingn, the system is
sensitivity of the scales on T or n is the origin of the glass driven towards and past this singularity. Thereby, a scenario
transition at some temperatufg or densityng, i.e., for the for the evolution of structural relaxation is obtained. For con-
crossover from an equilibrium liquid to some nonequilibrium ventional glass-forming systems, the MCT predicts that
amorphous solid. Stretching was first reported by Kohlrauscistructural-relaxation spectra evolve within the GHz band.
[2] who described his dielectric relaxation data by the func-This dynamical window is below the one studied for normal
tion @ (t) <exp—(t/7)?, B<1. von Schweidlef3] commented liquid motion but considerably above the window analyzed
upon the fact, that certain parts of dielectric loss spectra varin the classical glass-transition reseafth The GHz win-
according to the power law”(w)x1/(w7)?, b<1, if w is  dow became accessible only in recent years due to the inven-
shifted over two to three decades. Another fit formula fortion of new spectrometers. The first complete documentation
stretched susceptibilities was proposed by Cole and [@gle of the evolution of structural relaxation was obtained by Li
x(w)x1[1+(—iw7)?], a<l. It is an important issue of etal [11] for CKN and by van Megen and Underwood
condensed matter physics to provide an understanding ¢19,20 for a colloidal suspension. The former measured
structural-relaxation processes, in particular, of the menspectra as a function of temperature by depolarized light
tioned anomalous exponents. scattering, and the latter determined density fluctuation de-
During recent years, the mode-coupling the@CT) has  cay curves for various densities by photon correlation spec-
been developed as a model for the dynamics of strongly introscopy. The reported spectra and decay curves are strik-
teracting disordered matter. MCT models are based oingly similar to the corresponding results of MCT models.
closed nonlinear integrodifferential equations for a set of corThis observation was corroboratéd1,19,2Q by detailed
relation functions. The equations are regular, i.e., they dequantitative comparisons of the data with MCT formulas.
pend smoothly on system parameters likeand n; no as- A variety of techniques has been used to explore the dy-
sumptions on anomalous exponents, transitions or slowamics in windows relevant for a test of the MCT-
relaxations are built into the starting equations of the theorybifurcation predictions. Correlation function®(t) have
The MCT yields the cited Kohlrausch formul&], the von  been measured by neutron-spin-echo spectrosg2ply by
Schweidler function6,7], and the Cole-Cole susceptibility stimulated Brillouin scatterind26], or by transient hole
[8] as a description of their solutions in precisely definedburning[27]. Computer simulations also yiel@(t) as pri-
asymptotic limits. Furthermore, MCT predicted a critical mary output, and recently Monte Carlo studigz8] and
spectrumy”(w) = w? 0<a<0.5, which was experimentally molecular-dynamics work29,30 could be extended to such
detected in, for example, the molten salt Ca@yBNO; long times, that they can deal with the same windows as
(CKN) [9-11], the associated liquid glycer¢l2—14, the achieved by the mentioned modern experiments. Inelastic-
covalently bonded system,B; [15], and in colloidal sus- light scattering for frequencies between 0.1 GHz and 10
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THz, pioneered by Cummins and co-workgt6—-12,31,32 a second scaling law describes the final relaxation into the
provides correlation spect®”(w). So does inelastic neu- liquid equilibrium, as shown in Sec. VII. We discuss the

tron scattering, where great efforts have been made to extenrious qualitative trends of the deviations from the leading
the dynamical window to such sizes that the data becomeesults. The analytical results for leading-plus-next-to-

informative for glass-transition studies. This can be inferredeading expansions will also be compared with the men-
from Refs.[9,13,33, to mention some particularly interest- tioned solutions for the hard-sphere liquid model. The new
ing examples. Dielectric loss studies deliver susceptibility®Sults extend the range of validity of the old ones and pro-
spectray”(w), and this technique can now also be used invide a rather complete Qescnpnon of the bifurcation scenario
the GHz band34,35. Structural relaxation and the glass for the' model under d|sgu55|on. Thus,'thg purpose of t.h's
transition have also been studied for colloidal suspension@2Per IS to establish an improved qualitative understanding

[16,18-21. These systems are of particular relevance fo°f the MCT, to broaden the basis for experimental tests of

tests of theories, because of the simplicity of their structuret.he theory, and to deliver a set of reference results for future

From the cited papers one can infer that the MCT properlyc'tUdIes of other models.

describes some features of the evolution of structural relax-

ation for some glass-forming systems; and this appears as a Il. A MODE-COUPLING THEORY MODEL
motivation to continue studies of the theory.

The MCT equations of motion are complicated and most
of the theoretical work deals with attempts to understand the The basic version of the MCT deals with the dynamics by
properties of their solutions. Up to now, leading-orderM functions of timet, denoted by®,(t), g=1,... M.
asymptotic solutions have been worked out for parameterS§hese  functions obey the initial  conditions
near the mentioned bifurcation singularity. This work, re-®,(0)=1,0,®,(0)=0, and their time evolution is deter-
viewed to a large extent in Refs36—38, established some mined byM equations of motion
universal features of the bifurcation scenario, and produced a
series of handy formulas such as scaling laws. In principle,
these formulas imply a series of relations between measur-
able quantities. It was suggested to use these results as a
general basis for an assessment of the theory by experimental +Qimg(t—t')]0y Pg(t’) dt'=0 . (1)
tests. Indeed, quite a number of papers have been published
dealing with a comparison of experimental findings with The model is specified by characteristic frequenéds-0,
leading-order asymptotic MCT results, which are partly re-py regular relaxation kerneM"®9(t), and by mode-coupling

: ) . q
viewed in Refs[37-39. Recent work on the comparison of kernelsmy(t). The latter are functiong, of theM variables

MCT results with light-scattering studies for Conventionan)q(t)

systems are reviewed in Ref2l0—42, on colloids in Refs.

[43,44), on neutron scattering in Re#5], and on computer _

simulations in Refs[46—4§. In any experimental situation, Mq(t) = Fo(® (1) . 2

the MCT analysis of the data is complicated by the fact, that . ) )

there is no way to knowa priori what the range of validity of ~1heS€%q, which are called the mode-coupling functionals,

the leading-order expansions should be. Therefore, it €€ @ssumed to be absolutely monotafgif), as well as all

timely to present a discussion of the asymptotic corrections!S derivatives, are non-negative f64=0. The functionals

which lead to deviations from the widely used leading-order/q(f) depend smoothly on control parameters sucf a8

scaling laws. n. The Q4 and M9(t) specify the transient dynamics; in
The main aim of the present paper is the derivation of thedarticular, one gets ®q(t)=1—(Qqt)?/2+0(t*), if

next-to-leading corrections to the known, asymptotic resultdVl"%(t) is continuous int. The interesting features of the

of the MCT. With these new results estimates of the range oMCT result from the interplay of nonlinearities, which are

validity of the leading asymptotic results become possiblequantified by the kernels\,(t), with retardation phenomena,

For this second undertaking it is informative to compare theformulated by the convolution integral in E€L).

leading asymptotic results to numerical solutions of the MCT  In this paper the transient dynamics shall be simplified by

equations for a relevant model. Therefore, another goal ofwo specializations. First, a Markovian model is used for the

this paper is a comprehensive comparison of the leadingegular kerneI:M;eg(t)zvqé(t—O) ,vq>0. Second, the

asymptotic results with the MCT solutions for a liquid friction constantsy, are assumed so large, that the inertia

model. Thereto, in Sec. Il, the MCT equations of motion forterms can be neglected. As a result, the generalized oscillator

density fluctuations in simple liquids are specialized to aequations(1) are specialized to generalized relaxator equa-

hard-sphere liquid model. The numerical solutions of thistions

model serve as a basis for quantitative demonstrations of the

analytical results. Section Ill presents the bifurcation in the t

equations for the long-time limits. Section IV introduces Tq§t¢q(t)+d>q(t)+f My(t—t")dpDy(t") dt’=0 . 3

some concepts for the description of the bifurcation dynam- 0

ics, and Sec. V discusses the two fractal power laws in time,

which are the origin of the stretched decay in MCT. In Sec.The transient dynamics is now quantified by the time con-

VI the first scaling law is presented, which describes thestantqu=vq/Q§. The initial conditions for the relaxator

relaxation in an intermediate time window. For longer times,model have to be restricted tb,(0)=1. The relaxators ex-

A. The general equations of motion

t
&t2<I>q(t)+Q§<Dq(t)+fo[Maeg(t—t’)
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hibit the short-time asymptoteﬂpq(t)z1—(t/rq)+O(t2). Formulas(1), (2), (5) define the simplified or ideal MCT
For vanishing kernelsm,=0, the solutions describe un- [23]. They provide a self-consistent treatment of the cage
coupled Debye relaxation process@:&o)(t):exp(—t/Tq)_ effect. A review of the derivation, the contents, the short-
One can show the followin§49]: Egs. (2), (3) define a comings, and an extension of the ideal MCT can be found in
unique solution. The solution is regular in the sense that alRef. [56].
M functions®(t) depend smoothly om, and on smooth The theory shall be specialized to a system of hard
variations ofF, on any finite time interval. This means that Spheres with diametet, whose equilibrium state is specified
the model is well defined; nad hocassumptions on singu- by a single control parameter, the packing fraction
larities or glassy relaxations are made. Furthermore, the s@=7nd*/6. The structure factor shall be evaluated by the
lutions can be written as superposition of Debye relaxatiorPercus-Yevick theory52]. Thereby the\/(ﬁ;lz,f)), and thus
functions the functions#,, are obtained as smooth functions of
Furthermore, the wave-vector dependence of the regular fric-
N tion constants shall be ignored,= v; the time constants in
Pq(t)= fo e 7deq(v) “ the equations of motiongare thgn given as smooth functions
of ¢ by
whereg4(y) is an increasing weight function. The Laplace
transforms @ (z) =L[P4(t)](z) exist for complex fre-
quenciesz,Im z>0. We use the conventior’[ f(t)](z) 7q=tmicSq/(qd)?. (6)
=i[gexp(izt)f(t) dt. For real frequenciess, one obtains
with z=w+i0:P4(2) =D o(w) +idg(w), where Oy(w)=
Jocos@t)®(t) dt>0. The solutionsP4(t) have the proper-
ties of autocorrelation function0], and are therefore re-
ferred to as correlators. Th@g(w) are called correlation
spectra. In classical mechanics one can prove the fluctuatio
dissipation theorem which connects dynamical susceptibili
ties xq(w) and correlatorf50]. We use the convention
Xq(@)=2Py(2)+1 to defineyq(w). In particular, the sus-
ceptibility spectra are given by () = w®q(w).

Here,t,,i.= v(d/v)? is a time scale for the dynamics on mi-
croscopic length scales. The sum in Efa can be written

as a double integral ovée=|k| and p=|q—K| which shall

e approximated by a Riemann sum. To do this, a grid of
100 values for the moduli is chosen so that ¢fteare placed
with step sizeh=0.4 from 0.2 up to a cutoff* d=39.8,

Fo(H)=n[h®(328°7%)]1 X' S;S,Sc(kp/a®)
B. A hard-sphere model k p

An important quantity within the theory of simple classi- X[ (k?+q2— 52)Ck+(,52+62_ﬁ2)cp]2fkfp_
cal N-particle liquids is the intermediate scattering function -
Fq(t), ie., the correlator for density fluctuations @
0=N"Y2exp(ig-r;) for wave vector q: Fq(t)
=(eq4(t)*eg). The bracket denotes canonical averaging. A kd—hE nd—h o
These functions depend only on the wave-vector modulusiirlg 302 qd=hq,kd=hk,pd=hp

;q:t|q|.ST£1e||r |f|1|2'[|al Vﬁfluhes arebg|ven by thg _stattlc stru?ttjr:e summation is restricted tg—k|+1/2<p=<q-+k—1/2. All
actor Sy=(|4|“), which can be expressed in terms of the \\orical vesults and figures in this paper refer to the

direct correlation functiore, via the Ornstein-Zernike for- ., _ ;g component model, defined by E€®), (3), (6), and
mula: Sq=1/(1_—ncq). The c_haractenstlc; f.rgquenmésq n (7). Units of length and time shall be chosen so tdatl
Eq. (1), which determine the initial decay of dt. —160
D (1) =Fq(t)/S,, are given byd2=(qu) %S, with v denot- o qymie >
9 d q- 4 q e MCT equations for hard-sphere systems have already
ing the thermal velocity51,52. Equation(1) is an exact peen stydied befor23,57—60. In the earlier work usually
Zwanzig-Mori equation of motion relating the density corr- i o \/arjet-Weis approximation was used to evalugye the
elators ®4(t) to the correlation functions of longitudinal cutoff g* was chosen larger, the grid was taken finer, and
; — T 2 ! !
fluctuating forg:esl\/l o()= qug(t)+quq(t) [50-52. The  gpecial attempts were made to handle the small-wave-vector
contribution€)ym(t) is due to coupling of forces to density contributions toF, carefully. Our simplifications lead to
fluctuation products, and all the rest is combined tosmall differences of various amplitudes and constants com-
Mg %(t). If one treats the correlations of density productspared to previous results. These differences do not exceed
with Kawasaki's factorization approximatigs3,54 one ar- 5%, and are therefore of no interest for the intention of this

and a,k,p
..,199/2. The prime at the sum means that the

rives at Eq.(2), whereF, is a quadratic polynomial paper.
Equations(3) and (6) imply, that our model reproduces
F(f)= V(G:K. D) fif . 5 the initial decay of a hard-sphere colloidal suspension with-
o) g?,;::d (@k.P)Tify 3 out hydrodynamic interactiof61]. It can therefore be con-

sidered as a model for a colloid where all interaction effects
The non-negative coefficient the vertices, are equilibrium are ignored except those which describe the coupling be-
quantities[55] tween density fluctuation pairs and fluctuating forces. For
. . R such a model the MCT equatiort), (3), (5), and(6) can
V(a;k,p)=n§,SSp{alke+pc,1}4(29%) . (5b)  also be derived from the Smoluchowski equatiffa,63.
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Ill. THE BIFURCATION OF THE GLASS-FORM FACTOR

1
. . . . Cok... k.= — [ F(f)/of - --of
In this section some concepts and equations are intro- aky ki m![ a9ty ko

duced, which will be needed for a discussion of the MCT
solutions near bifurcation points. The technique of

asymptotic expansions is demonstrated for the form factor
f, of the glass. These are smooth positive functionseofThe values of these

and other quantities foe— + 0 shall be indicated by a su-

perscriptc. Let us introduce the differencesC=C—C°¢, so
A. The ideal liquid-glass transition that

><(1—f;;1)2- . -(1—f§m)2 : (9a)

Equation(4) shows that the correlators decrease monoto-
nously towards their long-time limitg,= ®,(t— o), which
obey O<f,<1. If these limitsf, are zero, density fluctua-
tions die out for long times, as one expects for an ergodic ACqy,- -k, = €Cio-kc T O(€? . (9b)
liquid. Edwards and Anderson pointed out in some other
context[64], that a nontrivialf,>0 is the signature of an One can rewrite Eq8) as
ideal glass state. In this case, the dynamical structure factor
Sq(w) [50-52 exhibits an elastic contributionS,(w) c 1.
=qu<Dg(w):wquqa(w)Jr(integrabIe function ofw). %’hus kgl [Oqk= Calgi=14q - (109
fq—which is called Edwards-Anderson parameter, noner-
godicity parameter, or glass-form factor—is the Debye-This result looks like a set d¥1 linear equations. However,
Waller factor of an ideal glass state. the nonlinearities are hidden in the inhomogeneéjty which

From Egs.(1) and (2) one derivesM coupled implicit  shall be written as a sum of two terms
equations forf=(fq, ... ,fy) [23]

— ¢
qul‘“km_qul“‘km+Aqu1“‘km '

M

lg=1"+15, (100
fo/(L=f)=F4(f), q=1,...M. ®

IM=ACq—(1-fS)g2+ >, CE : 10
The long-time limitsf, obey the maximum propert§36]: a o~ (1~ 195 % akpdkdp (109

T, o=fq, a=1,... M, where thef abbreviate any solution

of‘ Eqg. (8). Let us consider the sequence of vectors 2)_ . 2.3 c

f, j=0,1,..., defined by the iteration f{*"/ lq _; ACqgk—(1-1g) gq+k2p| Cakpi9k9p0
(1-f§*D)= ]-'(f(”) starting withf{”’=1. One can show -

[49] that thef(’) converge towards, in the limit j — . We +0(eg%.0%) - (100

have used thls iteration to evaluatg for our model and Let us also consider the matrix €
found the critical packing fractionp,=0.515912 13(1) [0, ()l J(1—f )2. The Jacobian matrix of the s gl'zem
separating liquid from the glass solutions. Studies of glassy K k ys
behavior require the analysis of dynamical windows and thé’f equations(8) is equivalent to thev XM matrix 1-C.
shifts of spectral features over many orders of magnifadle The matrixC has only non-negative eIemeank 0. Thus,
To reproduce such studies within the MCT one has to shifaccording to the Frobenius-Perron theord®s], there is a
¢— ¢ to very small values, as will be shown below in Figs. nondegenerate maximum eigenvafEi®f the matrixC; ge-
4-6. To do this in a reproducible manner, one has to identifyrerically any other eigenvalue, s&/, obeys|E’|<E. One
the critical pointe. with such high accuracy as noted. can show[49] thatE<1. If E<1, the Jacobian matrix can
For negative values of the reduced packing fractionpe inverted and varies smoothly withp. The condition for
e=(¢—¢c)/¢c, all correlators decay to zero, while for a glass-transition singularity therefore B=E°=1. For
€>0 ideal glass states with,>0 are obtained. Fop ap- ¢=0., One getsﬁqkz Cgk' The right and left eigenvectors

proaching the critical value from above, thg approach ¢ cehelonging to the eigenvalue unity shall be denoted by
positive constants, called critical form factd@s Considered - .
e ande, respectively,

as a function ofp, the long-time limitsf, are discontinuous

at ¢.. The pointe= ¢ is also called glass-transition singu- R R

larity; it marks a bifurcation point. ; Coke=6q; > €qCak= €k (11
q

B. The leading asymptotic results Generically, the numbers, , éq can be chosen positié5)].

In order to study the form factor near the singularity weT0 fix the vectors uniquely we impose the convention:
write fq=f5+(1—f$)%g, and solve Eqs(8) for smallg, = 48q8q=1 andqe,(1-f3)ed=1.
and small positives. The leading term of this expansion has  Due to the vanishing of the determinant of the matrix
already been worked out in R€f7], but we need to recall 1—C°, Eq.(10a can only be solved if the inhomogeneity on
some of the earlier results as basis of the intended extensioige right-hand side satisfies the solubility condition
of the analytical work. The nontrivial bits of the expansion
are the. Taylor coefficients af, for f=1¢, which shall be z éq|q=0 ] (123
used with the convention
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The general solution of Eq103 is the sum of a multiple of €

the dangerous eigenvector, sgg, and a special solution,
sayg. The latter shall be fixed uniquely by the condition
zqéq?jq:o. It can be written as a linear combination of the
inhomogeneities

9q=9€;+0q, "g'qzzp: Rplp - (12b

One can use simple series expansidB§] to evaluate
E.e, e, andR.

The glass-transition singularity is caused by the Jacobian
matrix to have a vanishing nondegenerate eigenvalu& 1
This means that the MCT bifurcation is a cuspoid bifurcation

A, 1=2,3,... inArnold’'s terminology[66]. For ¢— ¢, Sy
| solutions of Eq.(8) coalesce. The simplest possibility, the 048 050 052 054 0.56
Whitney fold bifurcationA,, occurs if the positive number 0

)\=Eqkpéchkpekep differs from unity and then the solution
for small e>0 can be obtained by an eXpanZSion in ?owers FIG. 1. The separation parameteras function of the packing
of \/E ~|n this case one gets I )=O(632), fraction ¢ (solid line. The dashed line is the linear asymptote
g=0(\/e),g=0(e). Thus, the solubility condition(12a 0=1.54¢, e=(¢o— @) ¢c, ¢.,~0.516. The diamonds mark the
reads in leading Ord@qéq|gl):0 andl® can be obtained Valuese=0.495 and 0.536, where the asymptote deviates foom
from Eq. (1009 with g;=ge,. One findso—g?+\g®=0. by 10%.

We get for our model A=0.735. The quantity
a’=2qéqACq, which is called the separation parameter, var
ies smoothly withe. In leading order ine one can write

_the increase of; is therefore much smaller fa~7 than for
g off the structure-factor-peak position. The transition is
driven primarily by the wave-vector contributions from

. g~7. For very largeg, bothfg andh, become small.
o=Ce, C=2 &C/’, (13
q

where for our model C=154. Thus one finds
g=*Vo/(L—\)+O(e) for 0>0. Because of the maxi-
mum property the positive solution fgrdescribes the small
e asymptotics of the glass-form factor. Introducing the criti-
cal amplitudeh,=0 by

(SRR

hg=(1—f5)%eq, (14)

. q
the leading-order result can therefore be noted as 0.8 1 h, o ®

<&
oo 0000000000g,
a Blal
06+ DDDDDDDD 5] g Doy

fqug+hq\(f/(1_)\) y O'>O . (15) a° ° g oo 000000 DDDDUDDDEDDD

OO
04 | o o D600 o
B 900000000 © o

o o
@ o
Yn,

Figure 1 exhibits the separation parameteas a function 02t 26000000000,
of the packing fractione in comparison with the linear R
asymptoteg(13). The latter describes correctly within 10% ’ ’ ’ 3
for |e|<0.04. The next Taylor expansion term of is of 1 b 2K Oooooooooo oo
order €? and, therefore, it would influence the asymptotic ° K, oDZAMAMmAAAAA
expansion off as a correction of ordee®?. Since we are or aomasastrAey AAMMMSéggiﬁA
going to consider only leading and next-to-leading expan- 1 | ocoon00%000, AAAAAAAOOOO"OOO ©
sions iny/e, the € correction ofo does not enter. Therefore, ° K
throughout the rest of this paper, is merely meant to ab- 2 o OO
breviateCe. ' ' y

In Fig. 2(a), the structure facto®, is shown fore=0 and 0 3 10 15 20
e==10 %3, S is the basic input for our model. In Fig(18, ' q

the results for the critical form facto‘lg and the critical am- FIG. 2. (a) Structure factos, as function of wave vectay for

plitude h, are shown. For larg&,, the compressibilityx,, ©=0.~0.516 (solid curve, ¢=0.492 (dashed curje and

xSy is large. Therefore spontaneous arrest is easy,fgnd ,—0.540 (dotted curve The arrows mark the wave vectors
exhibits a maximum near the position of the structure-factoig,=3.4, q,=7.0, q,=10.6, andqs=17.4. (b) The critical form

peak; with varyingq, fg oscillates in phase witlg,. Since factorfg (diamond$ and the critical amplitudl, (squares (c) The
fq=1, fq—fg is bounded by }fg. The amplitudeh, for amplitudesK, [Eq. (16), circleg andK [Eq. (23), triangled.

la|
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€
08 D ()
06 r
f
q
04
02 r
1 . 1 1 (DZ(t)
0.52 0.54 0.56
¢

FIG. 3. Glass-form factor$, for the wave vectorsy;=7.0,
g,=10.6, andg;=17.4 (solid lineg. The leading asymptotd&q.
(16), dashedidescribe the resuft;— fg within 10% up to the pack-
ing fractions which are marked by diamonds. The formula including
the next-to-leading asymptoféEq. (18), dotted works within a
10% accuracy level up te=0.141,0.033,0.064 foqg,,q,,q3, re-
spectively; the corresponding packing fractions are marked b¥or
circles.

FIG. 4. Correlators®,; and &, for the two wave vectors

=7.0 andq,=10.6, respectively, as function of lgg, calculated

the packing fractionsp= @ (1+€),e==10""3 The thick

curves labeledc are the solutions foe=0. The dotted lines are

In the following, the dynamics will be discussed in detail Debye functions “exp—(t/7) with f°=0.849,7,=1.37x 10"}, and

for the two representative wave vectarg=7.0, g,=10.6.  °=0.417,75=2.83<10" for q, anddy, respectively.

The first one is close to the position of the structure-factor

peak and the second one is close to the first minimum posi- 1

tion [compare Fig. @)]. These vectors will be referred to K= mz €q E qupekep —(1-f9)€f K

as 1 and 2. One get§;=3.49,55=0.597f=0.849, f$ K

=0.417hH,=0.323h,=0.642. Let us also note the time NAEY

scales for the transient motion, E@): 7{=11.4,75=0.851. + TE Coke/C— ——| (1 f )?

In Fig. 3, the variation off; with changes of the density is . V1=

compared with the leading asymptotic form@d). It works

on a 10% accuracy level fay,; up to e=0.003 only. The _2 Cakplekepel

comparison for the large wave vectgz=17.4 is also kpl

shown, where a 10% accurate description can be achieved — —

only for e<0.002. Forqg, the 10% approximation works up For our model, one getsk=0.961, K;=-2.26, K,

to e=0.08, but this large value is mainly due to an accidenta=—0.515, K;=1.28. The desired result, which describes

] . (17)

cancelation of higher-order terms. fq up to errors of ordee®?, reads
C. The leading corrections fq— fg= hgvo/(1-N)[1+ \/E(K—q-f— )] . (18

There are two contributions to the next-to-leading order o

. . 66 it
the expansion of,. One is given b)gq in Eq. (12b). It is fThe leading-order resullL5) described fq within a small

) A .
obtained froml; which can be approximated bﬁl In the :re] IaFlve errlcl)tre <as* L7nkg_is tr;e Fs_epara:t{lc;n Earamt(:]ter obeys
leading partl (" of the inhomogeneity, Eq100), one can e inequalityr< €™*/(Kq + «)”. Figure Zc) shows the am-

. _ e —a [T plitude K, for our model. In Fig. 3 it is demonstrated that the
SUbStItUteA.Cq C,S € and go=€qyo/(1=1). The result result(18) describes the solution on a 10% accuracy level for
shall be written aglq=e,0Ky/V1—\, so that

d: (g9,,93) up to the packing fractionse=0.589
_ (0.533,0.549), respectively.
Kq:Zk qu[ \/1—)\C(<°/C—[(1—fﬁ)eﬁ

IV. THE TWO-STEP-RELAXATION SCENARIO

- %: Cﬁp,epa / Vl_)‘] /eq ' (16) Figures 4—6 demonstrate the dynamics of our model. The
curves labelea exhibit the critical dynamics, i.e., they are

The other contribution is obtained by solving Efj2g with  calculated foro=¢.. The others refer to reduced packing

the formulag= \o/(1—\)[1+ ko +O(o)] in Eq. (12b. fractions, which are spaced with equal distance on a logarith-

For the coefficientc, one finds mic scale with three values per decade=+10 "3
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log,, @, (w)

>0

e<0

n=3

log,, @, (®)

FIG. 5. Correlation spectrab(w) and ®5(w) as function
of frequencyw for the results shown in Fig. 4. The dotted lines
are Debye spectralPp(®)=2xmax /[1+ (07p)%], With Xmax
=0.370 forqg,; and ymax=0.147 forqg,, and rp, specified in con-

nection with Fig. 4.

log,, %, (w)

e<0

log,, X, (®)

FIG. 6. Susceptibility spectrg”’(w)=w®"(w) for the results

n=0,1,..,14. Results foe=>0 andn=0,1,2 are not consid-
ered, since for the corresponding large packing fractions the
Percus-Yevick theory yields unphysical negative pair-
distribution functions. Notice, that the curves fex0 and
n=0 refer to a vanishing relaxation kernel; they demonstrate
elementary dynamics, as described by the Debye law. In this
section some general features of the shown transition sce-
nario shall be pointed out, and some concepts for its descrip-
tion shall be introduced.

The correlatorsb,(t) are smooth functions of on any
finite interval of time[49]. Therefore they have to be close to
the critical correlatorsbg(t) if |e| is small and if the time is
smaller than some crossover timg,. The cited smoothness
implies that this time scale;, diverges if the critical point is
approachedir;,(e—0)—x. There appears a first window
for stretched relaxation. It deals with the dynamics for times
which are larger than some tinig characterizing the tran-
sient but which are short compared tg,. The first relax-
ation step describes the long-time decay towards the critical
pIateaufg. Fort< 7., the decay curves areinsensitive as
is demonstrated in Fig. 4. For normal liquids, one finds a
white-noise spectrumP i iie noisd @) * @°, for frequencies
o below the band characterizing microscopic motion
[51,57. This behavior is demonstrated in Fig. 5 by the De-
bye spectra(the curves fore<On=0) for <0.1. The
stretching of the critical dynamics implies an enhancement
of the spectrabg(w) above the mentioned white-noise level
for 1/ ,<w<<1hy. For q=q, andn=10, one infers from
Fig. 5 that the critical-spectrum enhancement amounts to
more than a factor 100 i& decreases three decades below
0.1. A white-noise spectrum leads to a linear susceptibility
spectrumyihite noisd @) w, as is demonstrated in Fig. 6 for
the e<0,n=0 results foro<0.1. The spectral enhancement
due to the critical dynamics leads to a sublinear susceptibility
variation for small frequenciegg(w)ocwa, a<1, within the
window 1/, < w<<1fh.

Let us define the crossover time scalg more precisely.
For the liquid, the scale is denoted by ; it shall be chosen
as the one, where the critical plateau is crossed:
CDq(r;)zf;. For the glass, the scale is denoted ﬁy; it
shall be taken as the one where the plateau is reached within
0.1%: ®q(7q)—fq=1.001(,—f7). Figure 7a) exhibits
these scales as a function@ffor g=q,. One can check that
for small|€| the ratior, (—|€[)/ 74 (|€]) becomes indepen-
dent. In Fig. Tc), the ratior; /7, of the scales for the two
wave vectorsy, ,d, are shown as a function @f. For small
le|, the ratios are unity, i.e., the scales are asymptotically
independent ofj. In this sense one concludes, that there is
only one scaler;,, terminating the first structural-relaxation
step. The divergence af. = Tg for ¢— ¢+ 0 is the signa-
ture of the glass instability at the transition point. The diver-
gence ofrc,x 7y for ¢—¢.—0 signalizes the freezing of
the liquid at the critical point.

The liquid solutions exhibit a second relaxation process
for t>7, . It deals with the decay from the critical plateau
ch4 to zero. The second relaxation step leads toetkensitive

shown in Figs. 4 and 5. The dotted lines are Debye peak$juasielastic peaks of the relaxation spectra in Fig. 5 and to

Xo(0)=2xXmax@Tp /[ 1+ (0 7p)?], With 75 and xmax Specified in

connection with Figs. 4 and 5, respectively.

the corresponding low-frequency peaks for the susceptibility
spectra in Fig. 6. These peaks are the analog of Mountain’s
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FIG. 7. (a) The crossover timeSrg (diamond$ characteriz-
ing the first relaxation step and therelaxation timer(" (squarepas

a function of ¢ for the reduced packing fractioa=+10""%,n=
3-9 for the wave vectog,=10.6. The solid lines are the power-
law functions: 7" =c- /|€]®, ¢_=0.149, ¢, =0.7065=1.60,7" =
c’le]?,c’'=0.0920,y=2.46. (b) Ratio of the a-relaxation scales
71/ 75 (squarep for wave vectorsq,=7.0 andg,=10.6. (c) The
ratio of the crossover scaleg/7, (diamonds for the wave vectors
d1, 2. The horizontal lines irfb) and(c) mark theg— ¢, asymp-
totes 4.6 and 1.0, respectively.

peakd 67] for molecular liquids. Within the MCT for simple
liquids, it is the whole cluster of a particle with its cage
which plays the role of the molecule. Following the termi-
nology of the glass literaturgl], the second relaxation step
is called thea process.

An «a-relaxation time scaler, can be defined, for ex-
ample, as Ja/(;zwma)((q), wherewp,,(q) denotes the posi-
tion of the a-peak maximum of the susceptibility spectra.
Again, one concludes from the convergembg(t)%@g(t),
for e—0 and for any fixed finite time interval, tha—(]—wo
for e—~0—. Figure Ta) exhibits the strong increase og
upon approaching the bifurcation point fge=q,. Another
possibility for defining ana scale, sayr_(;, is given by
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Upon approaching the transition, the length of the time
interval whered(t) is close to the critical plateaﬁg in-
creases, as is obvious from Fig. 4. Fer0—, both charac-
teristic times7~ and 7’ become large relative to the micro-
scopic time scalet,. However, the second time scale
becomes large even relative to the large sealef the first
processr’/7~ increases foe— 0—. This is demonstrated in
Fig. 7(a@). The curves fom andn+1 in Figs. 4—6 differ in
factors 10 ' for the reduced packing fraction One infers
from Fig. 4 that the corresponding time_§ also differ by a
constant factorx. Similarly Fig. 6 demonstrates that the
wmadq) differ by the same factok. This means, that the
a-relaxation scale follows a power lawr’ =1/ €|?;y
=3 log;ox. The analogous conclusion is reached for the first
relaxation scaler; o<1/ e[°. The found increase of'/7~ is
equivalent toy> 4. Power-law functions are shown as lines
in Fig. 7(a).

The a spectrum of(I)[;(w) is not placed on top of some
white-noise background but on top of an anomalous spec-
trum. It is easier to avoid mixing up the two spectra due to
the two relaxation steps, if one considers the susceptibility
spectra of Fig. 6. The high-frequency wing of thepeak is
a function, which decreases with increasingBut the criti-
cal susceptibility spectrum increases with Thus the cross-
over from the first to the second relaxation step manifests
itself in a minimum at some frequeney,i,(q). The critical
spectrum leads to an enhancement of the spectrum
Xmin(q)zxg(wmin(q)) above a white-noise background:
Xmin(@) > Xwhite noisd@min(@))- The first step of the struc-
tural relaxation of the liquid leads to the spectrum within the
window wpin(q) <w<1/7y. The second step of the struc-
tural relaxation leads to the low-frequency spectra for
0<wnin(9).

The glass correlators do not exhibit a second relaxation
step, rather they arrest taf;>fg for t>7.,. If one wanted to
characterize the long-time dynamics of the glass also by a
time scaler’, one would have to use 4/=0. For¢+# ¢ the
distribution of rates in Eq(4) exhibits a gap[49]. This
means that all correlators approach their long-time limit ex-
ponentially fore# 0. Therefore the glass spectra vary regu-
larly for w<1l/r.,. The crossover from the linear low-
frequency spectrumxg(w< llrco)ocqu*, to the sublinear
critical spectrumyg(w> 1/7.,) = (wtg)?, produces a knee at
some frequency(q). The position of the knee can be de-
fined, for example, as the one of the maximum of the
Xg(w)/@ versus o curve. Again the knee intensity

®y(7) =f¢/2. One deduces from Figs. 4 and 6, however,y, (q) = x7(wk(q)) is enhanced above the white noise:

that 7-(’]/7-’ are independent o¢é for small separations. The

q

Xk(A) = Xwhite noisd@k(a)). By constructing similar figures

« scales for different correlators are different as one infergss Fig. 7 one can convince oneself thati(q) > 1/7, and

by comparing Fig. &) with 4(b) or Fig. 6a) with 6(b).
However, the ratio of the scales, saj/ 5, becomes inde-
pendent ofe for ¢— ¢.—0 as is shown in Fig. (b). Both
scales diverge fore—0 but so that r;=C;7' and
7,=C,7', where 7' —» for e—~0—, and C,, asymptoti-

a)K(q)OC]./T;r .

For a Debye correlator, the time ratit/ ;) has to in-
crease by about 1.34 decades from 0.105 to 2.303 in order to
scan the decay from 90% to 10% of the initial value. For the
same decay, the correlatdr, for e<0,n=6 requires an in-

cally aree independent. In this sense one concludes, that therease oft by about a factor 6.3810" as one infers from
a scales of different correlators are coupled, to use anothe¥ig. 4(b). This stretching of the specified time interval over

concept from the glass literatufd]. Asymptotically, the

more than four orders of magnitude is equivalent to a stretch-

slowing down of thea process is characterized by a single ing of the susceptibility spectrum over a corresponding huge

scaler’.

frequency window. A Debye susceptibility peak
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Xb(©)=2xmax@ o /[ 1+ (0 7p)?] has a width at half maxi- the critical dynamicgSec. VB and the range of validity of
mum of 1.14 decades. The spectrériOn=6 in Fig. §b)  the von Schweidler-law description of the process(Sec.
extends at half height frorm=2.81x10"° to w=5.61. Its VC).

width is more than 14 000 times larger than that for a Debye

process. A. The two anomalous exponents

Fi 6 exhibits Deb k dotted lings= 7’ and . . .
'gure 5 exnibits DEbye peaks as dotted ings: 7 arn Let us introduce a functiog,(t) and its Laplace trans-

the xmax are adjusted so that the-peak maxima for the ; that th at red
e<0,n=14 results are matched. The corresponding correla>'m 84(2) so that the correlators are represented as

tion spectra®(w) = xp(w)/ @ are shown in Fig. 5 and the B y(t)— FS=(1—£)2gq(t) :
decay curvesfgexp(—t/rD) are included as dotted lines in a a o=
Fig. 4. Comparing the dotted lines with the ones for the —Z®q(2)—f§=(l—f§)2[—zgq(z)] _ (209

n=14 « process, one concludes that stretching is not only
due to the crossover from the first to the second relaxatio
step, as discussed in the preceding paragraphaThecess

itself is stretched. The mentioned gaps in the distribution o
rateseq(y) in Eq. (4), imply th,at the low-frequency .parts of z—0, respectively, is considered for the glass. Both func-
the  peaks behave regulariy;(w 7' <1)=(w7'). Thisfea-  ,ns'are ysed as small quantities in the following. Substitut-

ture is shared betweem processes and Debye processes g Eq. (208 into Eq.(19) yields the equations of motion
one notices by comparing the dotted curves with the

e<0,n=14 curves in Fig. 6. The high-frequency wing of a zgq(z)/[1+(1—f°)zgq(z)]

Debye spectrum decreases Iineap[&;(er>1)o<1/(er); d

the logoxy versus logow plot is symmetric. Thea-peak =[fe/(1— )1+ 2L Fy(fE+(1— ) %g(1)](2) .

stretching is mainly caused by a sublinear decrease of the (20b)

susceptibility spectrum for H<w<llty: Xg(w)

«1/(w7')®, b<1. This also leads to the asymmetric shapes_et us specialize the preceding formulas to the critical point

of the Iog._ng’l(w) versus loggw graphs shown in Fig. 6 for ¢=¢.. Expansion of Eq(20b) leads to Eq(103 with g,

the & peaks. replaced by —zg(2)]. The inhomogeneity, in this equa-
The preceding discussion implies that the integraltion is also generalized to az-dependent function

Jo®(t) dt diverges fore—0. Therefore the Laplace trans- 1,(z)=1{"(z) +1{)(2). The first part is easily recognized as

forms ®(z) andmg(z) diverge forz—0,e—0. The Laplace a modification of Eq(100)

transform of Eq. (3) reads ®4(z)=-1/[z—-1/i7,

+my(2))]. In the specified limit one can negleej in com- 10(2)= = (1= [ —2g4(2)]?

parison withmy(z), i.e., the correlators for the slow dynam-

%he functionsggy(t) and[—zg,(2z)] are generalizations of
%he constantg,, which were considered in Sec. Il B. Both
unctions reduce to these constants if the limit-20 or

ics near the transition point solve the equation _ ¢
®y(2)=—1z—1Imy(2)], or equivalently{37] kzp Cakp? L9 VGp(V]1(2) - (213
Dy(2)/[1+2D4(2)]= LI Fo(P(1)]1(2) . (199 The second part is a modification of E4.0d)

The following calculations of this paper will deal with the |§42>(Z): _(1_fg)2[_zgq(z)]3

analytic discussion of Eq.19) with the aim to provide an

understanding of the Figs. 4—7. The parametgrsio not c 4
occur in Eq.(19) and therefore this equation caﬁot define a _k2p| Cakp?LLA(DGp(DGI(D](2) +O(g") -
time scale. Indeed, Eq19) is scale invariant: if the set of

correlators®(t), q=1,... M, solves Eq,(19), the same (21b
is true forCDg(t)zd)q(yt) for everyy>0. One overall time
scalet, for the solution has to be determined by matching
the M correlators®(t) to the transient.

The solution shall be constructed by an obvious generali-
zation of the one carried out above for E¢%0), (12). One
writes in analogy to Eq(12b) gq(t)=9(t)eg+g4(t), and
notices thag(t) is of higher order thag(t). Therefore, one
V. THE TWO TIME FRACTALS gets

In this section we will discuss how the appearance of two
relaxation steps is relat_ed to the appearance of two fractql‘gq(z)zz Ryp (1_fg)e’2)[_zg(z)]2
power laws in time, which is quantified by two anomalous p
exponentsa and b. The critical exponent describes the
low-frequency critical susceptibility spectrum and the von +E C;C)k|eke|25[g(t)2](2) +0(gd). (223
Schweidler exponentb quantifies the high-frequency Kl
a-peak wings. In Sec. VA a set of auxiliary results will be
derived, which is needed for the discussion of the fractallThe expression forgl)(z) is noted as a sum of second- and
decay laws. These results will be used, in particular, to dethird-order terms in addition to unspecified contributions of
termine the range of validity of the power-law description of fourth order
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10(2)=— (1 f$)e2[ —zg(2) ]2
—kEp CxepzLIg(1)2](2)

—2(1-f3)e[2°9(2)G4(2)]

—ZKEp CoZLl(1Tp(1)1(2) +O(g%)

(22b)

The expression forgz)(z) starts with terms of third order

log,, X/ql (w)

17(2)=(1-19)%e[292)*~ 2 CarpeiepeizL[9(H)*1(2)

pl

+0(g% . (220

7 5 3 -1 1
The functiong in Egs.(22) has to be evaluated from the log,, w
solubility condition(129. For a leading-order solution, only
the second-order terms in E(R2b) have to be taken into
account. Remembering the normalization condition for the FIG. 8. The solid lines are the correlatqe and the suscepti-

eigenvectore, e, and the definition o from Sec. 1B,  bility spectra(b) for g;=7.0 andqg,=10.6 at the critical point
one arrives at—zg(z)2=\L[g(t)2](z). This equation is ©=®c- The leading-order critical laws (1) — fg=hqy(to/t)® and

solved byg(t)=A/t*, provided the exponent obeys the Xq=!(1—-@)sin(ma/2)(wto)*a=0312t,=0.425 are shown by
equationl“(l—x)zll“(l—2x)=)\ Here and in the follow- dashes and the diamonds mark the posititﬁwsand ! , respec-
ing, T denotes they function Flor O<\<1 there are two tively, where they differ from the solution by 10%. The dashed-

solutions for the exponent One is denoted by, and obeys dotted lines present the leading-plus-next-to-leading-order results
the inequalities &a<1/2. The other is denoted by b, Eqgs.(27). The circles mark the points where these deviate from the

) . 3 solutions by 10%. The dotted lines (@ show the Debye laws
where O<b. The leading-order considerations lead to the¢(°)(t)=ex);g(ftlro) @) Y
-

conclusion that there are two power laws hidden in the MCT ¢
equations of motion, specified by the two anomalous expo-
nentsa and b [6,7]. The exponents are determined hy ]
which is, therefore, called the exponent parameter. For odfequencies beloww} =2.9x10"° for q; and below
model one getsi=0.312, b=0.583. w3 =2.1x10"2 for q,. Let us recall, that the need for intro-
ducing a scalé¢, results from the scale invariance, discussed
above in connection with Eq19).

B. The critical dynamics . . . .
The leading correction to the leading power law consists

The critical decay is described in EG0a by a positive  of two contributions. One is due to the tefga(t) in Eq.
function g,(t), which decreases monotonously to zero for(12y). It can be obtained by substitution of the leading ap-
larget. Hence, the long-time critical decay can be evaluategyroximationg(t) = (to/t)? into Eq.(22a. The result shall be
by the methods of Sec. VA. In the preceding paragraph thgyritten asgy(t) =eqKq(to/)?, so that
solutionx=a has to be chosen aml has to be taken posi-

tive. The constanfAA can be written in terms of a timg: c on 2

A=t3. Remembering the definitiofl4) of the critical am- quzp: Rap zk;f Cone®—N1-fp)ep) /eq. (23
plitude, one therefore obtains as a leading-order result for the

critical correlatordg(t) — fg=hg(to/t)? [7]. Figure 8 shows

the leading-order power-law results as dashed lines. Th&he amplitudes<, for our model are shown in Fig.(@; in
scaletq for our model was found by matching the long-time particular, one geti; = —1.02 andk,= —0.183. The result
asymptotes to the solution fo[rd)&(t)— fg] for t~10% for '§q can be substituted into Eq22b) so that|4(2)
to="0.425. The leading-order result describes the correlators:1{(z) +1{?(z) is expressed in terms aj?,g* and un-
within 10% for times down ta} =990 forq, andt; =14 for  specified term®(g*). The other contribution to the leading
d.. The leading-order susceptibility —spectray,(w) correction is found by solving Ed12g with the expansion
=hgsin(ra/2)I'(1—a)(wte)?, shown as dashed straight g(t)=(to/t)*+ k(to/t)?2+0O(1%3). One finds k= «(a),
lines in the double logarithmic plots of Fig(t8, describe the where the functiork(x) is determined by two constants
critical susceptibility spectra within a 10% accuracy level forand ¢
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As a result one finds for the critical correlator up to errors ofmost vanishes. In this case the range of validity of th&

order (/)%
D)~ fE=hy(te/) {1+ [Ko+ c(@)](to/)F} . (278

This formula is equivalent to the approximation of the criti-
cal susceptibility spectra up to errors of ordert§)>? by

X" (@) =hgsin(ma/2)I (1—-a)(wt){1+[Ky+ x(a)]
X Ka(wtg)?} (27b

where k,=2cosgra/2)I"(1—a)/N. For our model one ob-
tains £€=0.0422¢{=0.269x(a) = — 0.001 65k, = 3.16.
Equations (27) explain the range of validity of the

leading-order power laws. The corrections reach 10% foE

timesta‘ or frequencie&)a‘ , where in leading order
th1to=[10(Kq+ x(a))]¥2;  w}to=1[(t/to)ks?] 8

As illustrated in Fig. &), formula(273 describes the critical
dynamics within 10% for times down to 8.2 and 2.4 fpr
andq,, respectively. The resu(7b) accounts for the criti-

2.6x10 % and 1.%< 10 2 for q; andqs, respectively, as is
demonstrated in Fig.(B). Incorporating the leading correc-

law is particularly large. The amplitudes, also enter the
following formulas(30) and theirq dependence will be ex-
plained in that context.

Third, the timet; characterizing the onset of thetlaw
and the frequency); characterizing the onset of the® law
are not related by the naive requestwjt; being unity.
Rather, one getswgty =k;. For our model wq
=0.025,t§ . The size of the frequency window between the
microscopic excitation peak, located at {gg~0, and the
onset Iogowa‘ of the w® spectrum is larger than the size of
the corresponding time window between {gigrO and
logydty - In this sense, one concludes that it is more difficult
to detect the critical decay in the frequency domain than in
he time domain.

C. The von Schweidler dynamics

In this subsection, the second time fractal shall be identi-
fied as the initial part of the second relaxation step. To pro-
ceed, we consider times on therelaxation scale’ by writ-
ing t=t7",®4(t)=P,(t). Then, we carry out the limit

0—,7’'—o for fixedt and®, . Thereby, ther process is

-
%eparated not only from the transient but also from the first

relaxation step. The functioﬁiq(’t") describes the decay from

tions extends the range of validity of the analytical formulasthe critical plateau®q(t—0)=fg, to zero, ®q(t—x=)=0.

for the critical dynamics by nearly one decade dgrand by
about two decades fay;. Figure &a) exhibits as dotted lines

the Debye laws, which describe the transient dynamics in a
leading-order approximation. There appears only a small

window for the crossover from short-time normal liquid dy-
namics to the structural-relaxation dynamics.

Three features of the preceding results should be empha-

From the MCT equations of motiofil), (2), one thereby
obtains the equation of motion for the procesq 68|

Dy (1) =D — (d/d) fot Mg (T—T) BT dT

M0 =@ ) . (29

sized. First, the long-time or low-frequency dynamics as

guantified by Eqs(27) is determined by the mode-coupling
functional 7, . This holds except for the single scalg This

This result can also be obtained from E9) if the limit
e—0 is considered for the mentioned initial conditions.

numbert, quantifies the matching of the long-time decaysAgdain, Eq.(29) is scale invariant and does not allow to fix

for all g to the transient. The transient dependsas is

the time scaler’ for the a process. The scale will be deter-

obvious from Figs. 4 or 6; and one reason for this is theMined in Sec. VIC below. The general implications of Eq.

strongq dependence of the time scaleg Eq. (6). This q
dependence of the transient leads todhgependence of the

(29) will also be considered below in Sec. VII.
_ To understand the initial part of the process we write

size of the window where neither the short-time behavior nofq(t) — f§=(1— f5)?g,4(t) and solve Eq(29) by expansion

Eq. (27) describe the correlators.

in the small quantityg,(t). This leads to the same equations,

Second, Fig. 8 shows that the range of validity of thewhich were derived in Sec. V A. Therefore, one finds in lead-

leading-order results depends @nThis range is much larger
for g, than forq;. The reason is thg dependence oK,
[compare Fig. &)], which enters the results via Eq27) or

ing orderg,(t)=eqg(t) with g(t)=A/t*. We seek a solu-

tion which decreases with increasingand which vanishes
for t—0. Therefore, from the two possibilities faridenti-

(28). One infers from Fig. @), that there is one value for fied in the last paragraph of Sec. VA, we have to choose

d, where the correction factdiK,+ «(a)] in Egs. (27) al-

x=—Db, and we must requird=—B, B>0. The constant
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to some vaIua’T)g for the rescaled frequen&j. From Egs.
(30) one obtains in leading order

TH=1[10Ky+ k(—b)I™; BE=kPPA . (3D

These results are demonstrated in Fig. 9, where the values
@¥=19,¥%=28 andt¥=0.12,15=6.8<x10"2 are indi-
cated by diamonds. Within the intervigkt; the o correla-

tor decays fromf ; to 0.8&  for q; and to 0.71 for q,.

The von Schweidler law describes, on a 10% accuracy level,
that part of thex spectrum, wherg g(w)/ xmaXq) is smaller

than 0.12 forq, and smaller than 0.40 fag,. In the same
sense as discussed in the last paragraph of Sec. VB, it is

)

3 more difficult to identify the von Schweidler fractal in the

§§~ fregvuency domain than in the time domain, because
= @its=ky® is larger than unity. For our model

= @q=2.01ty .

The leading corrections extend the window of validity of
the analytic description by about an order of magnitude, as
can be inferred from Fig. 9. The points where the results,
5 Egs.(30), deviate from the full solutions by 10% are marked

log,, & by circles in the figures. On the specified 10% accuracy
level, Eq.(303 describes the decay of thecorrelator down

FIG. 9. The solid lines are the-decay correlatord,(T) (@) and 0 69% of its initial value forg, and down to 2.3% for,.
the correspondingy-susceptibility spectrg (@) (b) for the two Forg=qp>, the correction factor-[Kq+ «(—b)] in Eq. (30)
wave vectors); = 7.0 andg,= 10.6 obtained as solution of E@9). IS negative. Therefore, the high-frequency part of dhpeak
The dashed lines are the results for the von Schweidler asymptoi§ @ convex curve in the lqgy” versus loggw plot of Fig.
By(T)— f ¢=—hgt°b=0.583; they describe the solutions within 9(b). According to Fig. Zc) the correction factor is larger for
10% up to the points ¥ and@ § , respectively, marked by dia- 91 than for g,, indeed, it is positive. Therefore, the high-
monds. The dashed-dotted lines are the leading-plus-next-tdrequencya-peak wing in Fig. @) is, concave for;. The
leading-order approximations, Eq80). They deviate from the so- upper part of thex peak is, therefore, narrower fop than
lutions by 10% at the points marked by circles. for g,. The half width at half maximum height is 1.64 de-

cades fomy; i.e., this peak is 3.1 times broader than a Debye
B can be absorbed in the time scale The scale depends on peak. The peak fog, has a half width of 1.30 decades, i.e.,
the separation parametes, and—with the mentioned itis only 1.4 times broader than a Debye spectii@ompare
conventions—it shall be denoted by. In leading order one, in Fig. 6 the dotted lines with the= — 10" 3 result3. The
therefore, obtain§>q(t)—f§=—hq(t/t[T)b [7,68]. This for- wave-vector dependence &f, causes the stretching to be
mula is the von Schweidler lay8], mentioned in the Intro- more pronounced for the wave vectpy near the structure-
duction. The leading-order correction can be obtained as eXactor-minimum position than for the wave vectgy near

plained in Sec. VB. One gets up to terms of orti&t the structure-factor-peak position. There is a wave vector
_ betweenq; and g, and another one betweerq, and q;,
Dy(t) — 5= —hat {1 —-[Kq+x(—b)Jt%} , T=t/t). where the correction factor almost vanishes. For these two

(30  values ofq the range of validity of von Schweidler's law is
) ) _ o _ particularly large.

This result is equivalent to the description of the high- The essential wave vectors, which drive the liquid-glass
frequencya-peak tail up to terms of order @ by transition, are located within a shell around the structure-
—~ . factor-peak position, say, $qd=<14. It was explained in

Xq(@)=hgsin(mb/2) T (1+b)[1/6" {1~ [Kq-+ (= b)] Sec. Ill, why in this shelf { oscillates in phase witB,, and
Xky/B%, B=wt!. (30p  why hq oscillates opposite in phase; in particul&f,>f §
and h;<h, [compare Fig. &)]. The equations of motion
The amplitudes<, and the function«(x) have been defined (29) couple the correlators strongly within the mentioned
in Egs. (23 and (26), respectively, and shell. Therefore, the correlators have a tendency to reach
kp=2cos@b/2)['(1+b)/\. For our model one finds zero roughly at the same time. At the structure-factor-peak
x(—b)=0.569 andk,=1.48. positiond>q(T) has to achieve a larger decay than away from
The leading corrections determine the range of validity ofthis position; and this has to happen even though the ampli-
the von Schweidler asymptotes. These describe the initizlideh, for the initial decay is smaller than the one near the
part of thea decay within 10% up to some valm§ for the  structure-factor-minimum position. Consequently, at the
rescaled timet. The von Schweidler law accounts for the structure-factor peak the smallest stretching results. For the
a-peak tails of the susceptibility spectrum within 10% downdecay of®, to catch up with that ofb, it is necessary that
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the correction factor-[Ky+«(—b)] in Eq. (309 is larger ated and are found to consist of terms proportional to the
for q; than for g,, i.e., K;<K,. This explains the pro- amplitudeK, from Eq. (16) and other terms proportional to
nounced minimum of th&, versusg graph forq~7 in Fig.  the amplitudeK, from Eq. (23). It is more cumbersome to
2(c), and therefore the wave-vector dependence of theletermineg(z) or g(t) from the solubility condition(123g.
a-process stretching. It is the same amplitudg which  Via Eq. (14) this term leads to a contribution proportional to
quantifies the deviation of the critical law from the leading-the critical amplitudeh,. Let us writeg(t) as a sum of a
order asymptote in Eq$27). Thus theq dependence of the leading-order contributiorG(t) and a leading correction:

latter result is understood qualitatively as well. g(t) =G(t) +[H(t) + o X consi. The equation of motion for
G(t) is obtained by working out the leading approximation
VI. THE FIRST SCALING-LAW REGIME of Eq. (12a: S4e4) (2)=0. Remembering the definitions

of the separation parameterand of the exponent parameter
The regularity properties of the MCT solutions imply that A from Sec. 1lIB one get$6,7]

in the vicinity of the glass transition there is a time window
where the correlatord(t) are close to the critical plateau o—[2G(2)1°=NzL[G(1)?](2) . (34)
fg. In the frequency domain, this condition implies the ex-
istence of a window where the susceptibiljy(w) is close
tol-fg

This result can be used to eliminate Laplace transforms of
G(t)? in terms 0ofG(2)? and vice versa. One obtains

- _ 1 ) ) o — o
—zgq(z)—quqX z°G(2) 1N +Kq€q T
If e=(¢— )/ @, decreases to zero, the length of this time (3539
window diverges. Within the short-time part of this window,
the correlators decay towardﬁ. Within the glass, and _
near Tco=t§ , the dynamics deals with the crossover to ar- 9q(1)=Kqeq
rest at the long-time limif,. For the liquid, the correlators
cross the plateau ateo=ty and then approach the von as well as the equation of motion fét
Schweidler decay for longer times. The dynamics within the
specified windows is called MCB relaxation[37]. In Sec. ANL[G(HH(1)](2) +2G(2)H(2)
VIA, it will be demonstrated that the equations of motion _ 3 2
can be simplified considerably for tm}recllaxation process. =~ ELG7)(2) ~ N zGR) LG (2) - (359
In Sec. VIB. it will be discussed how the leading-order termsthe numberst and ¢ have been introduced above in Egs.
yield a scaling-law description of th@ dynamics. The range (24) and (25). An equation equivalent to E4350 has been
of validity of the scaling-law description is discussed in Sec.gerived before8] for MCT models dealing with the case

[ Do) —FS<1, [xq(@)—(1—FS|<l. (32

g
G(t)z— T)\

1 +Kq€q

(35b)

g
Ji—\'

VvIC. M=1. The general case extends tile=1 one in the defi-
nition of the two numberg and {. The appearance of the
A. The equations of motion for the relaxation terms proportional toK, and K, has no analogy within
near the critical plateau f M=1 models.
Let us start with the equations of moti¢20b). The con- Combining the preceding results one finds for the correla-

ditions (32) are then equivalent to the statement that—intors in leading-plus-next-to-leading order

addition to e—g,(t) and zgy(z) can be treated as small c 5 =
guantities. The following calculation therefore is a combina- Do(t) —Fg=hg{G() +[H(1) +KqG() "+ aKq]} .

tion of the expansion procedures carried out in Secs. Il B, (363

IC, and VA. One arrives at the analog of E3.09 This equation is equivalent to the formula for the dynamical

susceptibility
Xq(@)— (1=

In analogy to Eq(10b), the inhomogeneity consists of two —hg{zG(2)+[zH(2) +K (U—ZzG(Z)Z)/)\—a'IZ 1.
contributions:J4(2) =3 {"(2) + I P)(2). These combine the d a A
results of Eqs(100), (218 and (10d), (21b), respectively

; [Sqk— C I —2(2)]=34(2) . (333

6b)

Above, the new amplitudlezq abbreviates

JP@=ACc+1 (), N
Kq=[Kq=Kq/V1I=N+k+(N{=EI(1-N)*?])/J1-\ .

(360)
(2= ACql-2za(2)]+1P(2) . (33D _ ;
k For our model one obtain&,;=3.57,K,=3.78.
The solution of Eq(33a can be written in the form of Eq. B. The leadi q i
(12): g4(2) =g(2)eq+Ta(2) Or gg(t)=0(t)eq+Tg(t). As - '€ leading-order results
before, one shows that the padg only contribute to the If one restricts the result&36) to the leading contribu-

next-to-leading terms. Therefore, they can easily be evalutions, one obtains the factorization theorgnj
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G(1)=C,9+(t/ty) , Xx"(w)=Cox«(wt,); o=0.
(39)

For the correlation scale, and time scalé,, the following
power laws are valid:

1
co=\lol: te=tollo]®, d=5-. (40

The control-parameter-independent master functignét)
are obtained by solving Eq34) for o= *+1. y.()/w is the
Fourier cosine transform af. (t). These functions depend
smoothly on\. Figure 10 shows the results for our model.
The dependence @(t) or x"(w) on the control parameters
enters via the two scales, andt,. The square-root result
for the correlation scale,, is the fingerprint of the underly-
ing fold bifurcation. The exponerd for the time scale is also
fixed by \; depending on the mode#; can have any value
larger than unity. For our model we obtaifi= 1.60.

For small rescaled times=t/t,, the master functions
approach the critical asymptote

log,, & g.(1)=1/t2+ A 12+ 0(1%9) ,

FIG. 10. (a) Correlators 1i® (curvec) and B-relaxation master A;=3/[T(1+a)l'(1-a)—\]. (41)

functions g.(t) (curves =) for the exponent parameter . .
9=(t) I ) P P For our model, one findé;=1.12. These formulas explain

A=0.735a=0.312. The dotted lines represent the short-time h . h of th d f
expansionsg. =1/£2=1.122 The dashed line exhibits the von '€ SYMMetric approach of the curvestowards curvee for

Schweidler Iawg,(f)=—B7[b and the dashed-dotted curve is the t$1_ m Fig. 1da). The CorrESpondmg ap_prof"‘Ch_Of the sus-
expansion g_(1)=—Bi*+B,/(BI") (b=0.5838=0.836, B,— ceptibility spectrat towards the straight line in Fig. 1Qb)

0.431). The arrows mark the crossover tinies (b) The suscepti- for rescaled frequencies=wt,>10 is explained byw

bility spectra)}([u) for the results from@. The arrows mark the tlm_?ﬁ thel Fourier C(I)Stme transform r?f E(:d;‘l)'l i limit
minimum and knee positions. e glass correlatog, approaches its long-time limi

1/J1—\ exponentially[49]. A characteristic crossover time
t. can be defined, for example, as one where the monotoni-
cally decreasing correlator reaches its long-time limit within

0p- T )= 11— i -
The deviationsb(t) — f ; of the correlators from the plateau 0.1%: g,(t,)=1.001N1—\. One obtains a regular low

f ¢ consist of two factors. The dependence is given by the T€AUeNncy spectrumy. (w)= Cow+0(w?). The crossover
critical amplitudeh,. The dependence on time and on thefrom the linear susceptibility spectrum for small to the
control parameters is described by the second fa@i@). sublinear critical spectrum for large causes the knee of the
Equivalently, the spectrung ;(w) consists of the first factor log, gy versus logow graph in Fig. 10b). The knee fre-
hq and of a second factqr"(w) which is the absorptive part  guencywy can be defined, for example, as the position of the

of zG(z), for z= w+i0. The factorization theorer(87) re-
flects the center-manifold theorem of bifurcation thel@9]. maximum of theX*(w)/\/_ versuse graph Let us denote

One can consideG as a function of the two variables the spectral intensity for the knee B =Y. (w). For A=
(t/ty) and o. This function is to be evaluated for evexy  0.735 one obtainst, =3.33,w,=4.80C(=0.326x,=0.75.
G(t)=g(t/ty,0). The functiong has been discussed com-  For larget, the liquid correlator approaches the von Sch-
prehensively in the earlier literatuf@6,70, and therefore weidler law

we shall quote—without proof—only those properties which

D)= Fi=hG(1) , xi(@)=hyx"(w). (37

are necessary to understand the following figures. g_(t>1)=—(Bt?)+B,/(Bt®) + O(1/°%®) ,

At the critical point, Eq.34) yields the leading-order re-
sult for the critical decay from Sec. VB B,=3/[T(1-b)'(1+b)—\] . (42
G(t)=(ty/t)?, For our model, one find8B,;=0.431. A crossover time

t_ can be defined, for example, by the zero of the decay
X"(w)=sin(ra/2)T(1-a)(wty)®; o=0. (38  function: g_(t_)=0. The crossover from the von Sch-
weidler susceptibility for loww, y_(w<<1)=sin(mb/2)I"(1
For nonvanishing separations, one obtains scaling laws  +b)B/w®+O(wP), to the critical susceptibility spectrum for
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FIG. 11. Functionsb (t)=(D4(t) — )/ (hg\/C) for go=3.4, - "
q,=7.0,9,=10.6, andqsq: 17.4 fore— = 10~ for three values of FIG. 12. The spectraq(w)=x q(@)/(hq JC) for the results
n (solid lines with labels 0 to 3). The diamonds mark the position from Fig. 11(solid lines. The diamonds mark the points where the

where the<i>q(t) deviate by +0.05 from the scaling asymptotes )fq(w) deviate by 10% from the scaling-law —asymptotes

G(t)/\/C, which are shown as dashed curv&=1.54 and the x(@)/\C, which are shown as dashed curves. The curves for
curves fore>0 are shifted downwards by 1, for clarity. €>0 are shifted downwards by one decade, for clarity.

high @ causes the minimum of the spectrufn. in Fig other factor 10 is an_alyzed for thre=8 results in those fig-
o o - ’ ures. The asymptotic laws now hold for a 3.5 decade time
10(b). Let us denote the minimum position by, and the  \indow, i.e., for 1.5510g,¢=<5.0 within =0.05. In the fre-
minimum intensity byxmin=x-(@mnin). For A=0.735 one  quency domain, a similar shrinking of the window for the
gets:f,=0.704;:)mm= 1-56.520-8363(mm=1-22- applicability is demonstrated. For the two wave vectoys
The asymptotic resulté37), (39—in particular, the evo- andgs, the susceptibility spectra of the liquid deviate already
lution of their ranges of validity with changes of the reducedqualitatively from the master spectrug . For then=8
packing fractione—are demonstrated in Figs. 11 and 12. Inresults, the glass spectra deviate for all wave vectors and
addition to the correlators for the wave vectgrandg,, the  frequencies from the master spectrum by more than 10%.
small wave vector,, and the large wave vectop are con- In connection with Fig. &), characteristic times ; have
sidered[compare Fig. @)]. Figure 11 shows that the func- been defined, which quantify the crossover timgg from
tions (®4(t) —f 3)/(hq\/6)=<i>q(t) agree with the scaling- the first to the second relaxation step. Corresponding times

law result G(t)/\C=c,g.(t/t,)/\/C for n=14 within t. have been defined above for the correlagrét). Within '
+0.05 for the eight decades interval &g, t=<9.5 [C is the range of \_/alldlty of the leading-order results one obtains
the coefficient defined in Eq13)]. Similarly, Fig. 12 shows from the scaling laws Eq39), the formula

that for n=14 the functionsy,(w)=x (w)/(h4\/C) agree L

with x"(0)/(VC)=c,x-(wt,)/\/C within 10% for the four Tq=tils. (433
decade intervat- 8.5<log;qw=<—4.5. Notice that the rescal-

ing of the master spectrum is achieved in the double logak is the factorization theorem which explains théndepen-
rithmic representation of Fig. 12 by a mere translation of thedence of the scalescf in the limit 0—0, which was dem-
plot without change of shape: the dashed lines are obtaineshstrated in Fig. (€). The strong increase of the scales,
by translating the graphs from Fig. @) by log,o(c,/\/C)  which is shown in Fig. @) for |o|—0, is a consequence of
parallel to the vertical axis and by lgg, parallel to the the power-law divergence obtained fgy in Eq. (40). The
horizontal one. If the separation parameter is increased by lines through the diamonds in Fig(&f exhibit the result
factor 10, the ranges of validity of Eq7), (39) shrink by (433 for our model. Equivalent results are obtained if one
more than a factor 100 as is shown for #e 11 results in  considers the positions,in(q) and wy(q) of the suscepti-
Figs. 11 and 12. A further increase of the separation by anbility minima and knees. Again, one finds these quantities to
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FIG. 13. (a) Positions of the susceptibility minima,,,;,(q) and

kneeswg(q) for ¢<¢. ande> ¢, respectively. The squares refer  FIG. 14. Master function&(t) as function of the rescaled time
to q; and thg diamonds tqg. The solid lines are the scaling-law f=t/t[, () and the master susceptibility specirh”((:)) as function
asymptoteq win/tol|o]’, [y /to]|o]’, 6=1.60. The circles are ot the rescaled frequency=wt, (b) for the corrections to the
the susceptibility maxima positions,,{d,), and the Iin2e shows s relaxation scaling laws for\=0.735, é&=0.0422, {=0.2609.
thg power-law asymptotema=3.740]%; y=2.46.(b) @i, and  cyrvesc refer to the critical point and curves to glass and liquid,
w}’ for the data from(a) in comparison with the leading-order regpectively. The dotted lines i) exhibit the asymptotic laws
results, Eqs(44) (straight lines, a=0.312. The circles are iy h.=—0.00165122%2.48. The dashed-dotted line is the approxi-

max
for the data from(a) together with the straight line asymptote) mation h_(1)= x(—b)(BI)2+%(—b), where x(—b)=0569,
k(—b)=2.97B=0.836. The dashed lines represent the asymptote

[x q(@min)/(2hg)1? and[ x 5(wk)/hg)? as function of the packing
fraction for the data from Fig. 6. The straight lines are the scaling-""* . i ]
law asymptotes from Eqé45); squares refer tq,, and diamonds to N~ () = «(—b)(Bt°)*. The arrows are the markers from Fig. 10.
d2-

The results forwmin(q)%® and wx(q)?® are compared with
be g independent within the range of validity of the factor- the asymptotic straight lines in Fig. 8.
ization theorem as is shown in Fig. (B8 Compressing the The fold bifurcation also manifests itself by a vanishing
liquid towards the critical packing fractiop, manifests it-  of the spectral intensities at the minimum and knee propor-
self by an approach ab,i,(q) to zero. Similarly, the melt- tional to the universal square-root law
ing of the glass upon expansion is reflected by a vanishing of
wk(q). The scaling lawg39) yield the power-law results - -
Xmin(q):thminCo; XK(q):thKCo- (4539

Omin(A) = Omin/ty,  ok(q)=oK/t,. (43D Again, the singularity is exhibited more transparently by

) ) o considering a rectification diagram, i.e., a plot of the squares
The asymptotic laws are shown as lines in Fig(al3The of the intensities

power-law singularities for the frequency scales are more

explicit in a rectification diagram, i.e., in @%® versuse R

representation. Within the range of validity of the leading [)(mm(q)/hq]ZZ[Xmin]ZC((pc—(p)/(pc, <o,
asymptotic formulas, one obtains a linear variation with the (45b)
reduced packing fraction

[xk(@)/hg?=[xk]’Cle— 9o ¢c, ¢>¢c. (450
wmin(q)za:[wmin/to]zac(‘Pc_‘P)/QDcv <@g,
(443 |n Fig. 130), the results for gmin/hg)? and (xk/hy)? are

A compared to the asymptotic straight lines, showing the right-
() P=[wx /t]?2C(e—@c) @c, ©>¢.. (44b  hand side of Eqs45).
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C. The leading corrections to the scaling laws H(t)= K(a)(tolt)za © =0 (47)

The range of validity of the scaling-law description of the
dynamics isq dependent, as is obvious from Figs. 11-13.Here, x(x) was defined in Eq(26). For nonvanishing sepa-
The q dependence is determined b¥, and the terms pro- rations, the scaling law&39) for G(t) imply corresponding
portional toK , in Egs.(36). SinceG(t)g:c(Z,gi(t/t(,)z, the  results forH
G? terms are also given by scaling laws; the time scale is the
samet, as discussed above, but the amplitude scale is re- H(t)=c2h.(t/t,) ; ¢=0. (48)
duced frome,, to ¢ 2=|a|. With H(t) a new function enters.

Its equation of motion can be noted in a convenient form byrpe o-independent master function&_(f) are given by

Laplace backtransformation of E5¢) \,&,¢. They can be evaluated from E@6) with G(t) re-
t placed bygi(f). Figure 14 exhibits the results for our
)\G(t)H(t)—(d/dt)f G(t—t")H(t") dt’ model.
0

The properties of the functiorts. can be understood by
t working out asymptotic expansions along the same lines as
z)\g(d/dt)j G(t—t)G(t")? dt’ —¢G(t)® . (46)  done before forg. [70]. The short-time expansiofdl)
0 yields a corresponding result for the new master functions

The solution fore= ¢, which reproduces via Eq363 the R L )
results of Sec. VB for the critical relaxation, reads h.(t)=«(a)/t?®Fk(a) +O(t??) , (49

)_K(X)[F(1+X)F(1—X)—)\2]/)\—3§+ 2N +T(1+X)T(1—X)]

KX 21— MIT(I )T (1—X) -] (50)
|
For our model one findg(a) =2.48. These results explain CIDq(t)—fg=hqca{g+(t/ta)+cg[h+(t/t0)
the deviations ofh. from the critical law(47), which are - _
shown in Fig. 14a) for t<0.1. For long times the glass +Kqg=(tt,) K]} . (529

correlator approaches a constam;(fﬂoo)z(g—)\g)/
(1-X\)?. Equation(42) leads to the long-time power-law For fixed rescaled timebs=t/t,,, the corrections to the lead-
divergence for the liquid correlator ing asymptotic laws vanish proportional {fe|. The correc-
h_ (})=x(—b) (B 2+ %(—b)+O(i~20) . 51 tion cght(_t) does n_ot lead to aviolation.o_f th_e- factorization
(D=x(=b)(BE)™+k(~b)+O( ) G theorem; it can be interpreted as a modification of the factor

For our model one obtaing(—b)=2.97. G in Eq. (363. The corrections to the factorization theorem

Substitution of the found scaling-law results into Eg. are given by the '[ermts(,quzi andc,K,. A corresponding
(369 yields the results for the leading-plus-next-to-leadingresult can be derived from E¢B6b) for the dynamical sus-
approximation of the correlator far=0 ceptibility

Xq(w) - (1_ f g) = thO'{(ZtO')gi(Zto') + CU[(Zta')hi(ZtO') - Kq(Zta)zgi(ZtU)Z/)\ + Kq/)\ + lzq]} . (52b)

The solid lines in Fig. 1&) reproduce the decay curves from critical point. Therefore the results for these deviations can
Fig. 4 for n=9, i.e., for reduced packing fractions be inferred from the discussion for tlke=0 case in Sec. VB.
€==x0.001, and Fig. 1®) shows the results fon=6, i.e., In Fig. 15—as opposed to in Fig(é—error symbols mark
for e==0.01. Figure 16 exhibits the corresponding suscepthe absolute deviations of the analytic approximation from
tibility spectra. The dashed lines in Figs. 15 and 16 show thehe full solutions by+0.05. The incorporation of the leading
scaling law approximatioti37) and (39), while the dashed- corrections extends the range of validity of the analytic for-
dotted lines exhibit the leading-plus-next-to-leading-mylas by about one order of magnitude. The figures confirm
approximation results Eqe52). _ the conclusion which was drawn above from Figa)8 Eq.
The deviations of the asymptotic sglutlons from the Corr-(524 describes the short-time dynamics except for that ini-
elator®y(t) increase if the rescaled timtedecreases to small tja| part, which is given by the free motioh 80)(0, Similar
values. But—according to Figs. & and 14a—for  results hold for the approximation of the high-frequency part
t<0.01 all functions become very close to the results for theof the susceptibility spectra. The analytical formulas work
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FIG. 15. The correlators from Fig. 4 far=+10"3 [n=9 in FIG. 16. The susceptibility spectra for the results in Fig. 15.

(@] and e=+10"2 [n=6 in (b)] are shown as solid lines. The Diamonds and circles mark the points of 10% deviations from the
dashed lines are the leading-order asymptgticelaxation results  spectra for the leading and leading-plus-next-to-leading asymptotic
[Egs. (37), (39), and (40)]; the diamonds mark the points where formulas, respectively. Notice that fer=0.01 the approximations
they deviate from the solution by 0.05. The dashed-dotted lines deviate for all frequencies by more than 10% from the solutions.
are the leading-plus-next-to-leading approximation Ea; the

circles mark the points where they deviate from the solution bythe expressionUB(t/tg)b, one can combine the power laws
+0.05. for c, and (1t,) Eq. (40), to a new power-law time scale

much better for the wave vectgp, than forqg,. The reason ., ) , n 1 1

was explained above in connection with Fig. 8. Notice in te=tollo”, to=te/B®, 7:£+% (53
Fig. 16(@) that, for g; and e=0.001, the leading-order ap-

proximation deviates from the correct spectrum by more thaiFor our model one findg:;=0.578, y=2.46. Remembering
10% for all frequencies. A corresponding statement holds fO{he von Schweidler lavg_~ —B1® and the corresponding

g, andqgs,, for the e=0.01 results in Fig. 1®). by 2 .
For the glass curves, the deviations of the approximation esulth_~«(—b)(Bt")" from Eaq. (S1), one Ob_Ia'F‘S from
Eq. (529 for the asymptote of th@-relaxation liquid corr-

from the solutions decrease with increasing time. The corre
tions to the scaling-law asymptote of the long-time limit, Eq. lator for larget=t/t,,

(15), are much bigger fog, than forg,. This is shown in c b b

Fig. 15 and was explained above in connection with Fig. 3. ®Pq(t) = fq=—hq(t/t ))*{1-[Kq+x(=b)](t/t )7} ,

As before, one shows that the low-frequency spectra for the

glass are regular. Therefore, one gets from ExRa the €<0 . (54
result: x g(@) =heC,{Co+DC,+O(a)}(wt,) +O(w?) for _ _

€>0. The scalmg -law coefficierE, is given by the regular ©On the other hand, in Sec. V C, the solutions have been con-
low-frequency behavior of the master susceptibility Sidered fore—0— for fixed t=t/t; . If one compares the
)(+(w—>0) Cow. The leading corrections to the linear sus- result (308 with Eqg. (54), one |dent|f|es the previously un-
ceptibility spectrum are given by a coefficient, for which Eq. SPecified time scale; for the  process with the power-law
(529 yields a g dependence of the form:D, scale from Eq(53). _ _
—D+2K Co/()\\/_) For our modelD = — 0.186. The According to the preceding paragraph the relaxation of
q dependence d{ WhICh was exp|a|ned above in Sec. VC the ||qU|d for times IOng on Scal'e, t t/t >1 is identical

and which is exh|b|ted in Fig. ®), is the reason, why the with the relaxatlon below the plateaflg for times short on

corrections are  bigger for q; than for g,  scale t) t=t/t] The relation of the analytic
D;=-1.94D,=—0.501. These findings are demOHStfatedB—relaxatlon results to the solutions for largeand smallw
most clearly in Fig. 160). can therefore be inferred from the discussion of Fig. 9 in Sec.

The discussion of the liquid dynamics near the bifurcationy C,
singularity is more subtle than the one for the glass. This is The scaling-law result describes the decaylof{t) near
due to the von Schweidler divergence for latg&q.(42). In  the plateau fore=—0.001 well for a time window of about
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five and a half decades, as follows from Fig.(d5 The (1_fg)2(f,q(z)/[1+'z£f)q(z)]2

approximation of the minimum ofy5(w) by the master

spectrum only works for a three decade frequency window,

as shown in Fig. 1@). A similar observation holds for the =C (‘)+2 E[qu \Ifk(t)](~) (58)
leading-plus-next-to-leading  asymptotic  results:  For

e=—0.01, the decay ofb(t) is described for a time win-

dow of about four decades, as shown _in Fig(blSFigu_re B. The leading-order results

16(b) demonstrates that the corresponding approximation for _

the susceptibility spectrum works for a frequency window of  If one ignores terms of ordes, one gets from Eq(55)
two decades only. The window for the applicability of the scaling laws for the correlators and susceptibilities
asymptotic laws is larger in the time domain than in the )

frequency domain. This implies that it is easier to identify q)q(t):q)q(t/t )i Xq(@)=Xq(wts) . (59)
the scaling laws foid,(t) versus logqt diagrams than for

|ong '(w) versus logyw graphs. The reason is the appear- The control-parameter-independent master funct@gst)
ance of the factork, andky, for the correction terms in Eqs. and qu() are to be determined from E¢7), which is the
(27b) and (30b) as was explained in Secs. VB and VC, Laplace transform of E¢(29) from Sec. VC. The suscepti-

respectively. bility master function is related to the Laplace transform of
the correlator by:xy(@) =2®y(2) +fg, Z=@+i0. Within
VII. THE SECOND SCALING-LAW REGIME the leading-order description, the sensitive dependence of the

long-time or low-frequency liquid dynamics is thus caused
entirely by the singularly varying time scat€. from Eq.
(53).
If the correlatorsd, for the « process are considered as
nctions of the rescaled tlmesthey coincide for alle with
.the common master cunv,. Equivalently, if the suscepti-
bilities Xq are considered as functions of the rescaled fre-
quenciesw, they are superimposed for all control parameters
¢ onto the common master susceptibifjhf. Therefore, the
scaling laws(59) are referred to as the superposition prin-
ciple, which is a concept from the glass literat(itg. This
principle is obtained as leading asymptotic result for the
MCT « process in the limitp— ¢.—. The precise formula-
tion is the interval of rescaled timeéswhere the®(t) can
be superimposed o@q(T), expands to arbitrary sizes for
_ €—0—. This is demonstrated in Fig. 17 for our model. Simi-
Let us introduce rescaled timésand frequencieg, @ in larly, the interval of rescaled frequenciés where x,()
the scale invariant equation(19) as done before coincides with the master susceptibilitigg(@), expands for
T=t/t] Z=zt. B=wt.. To study the dynamics on scale decreasing- e, as is shown in Fig. 18. The rescaling, i.e., the
t), we carry out an asymptotic expansion for small negativaeplot of the results as functions of lggor log, ;@ instead of

The first scaling law and its leading corrections deal with
the dynamics on scale,, Eq. (52a. For ¢> ¢, the corr-
elators arrest fot/t ;> 1 and therefore the results of Secs. Il
and VI provide a complete description of the MCT bifurca- fu
tion dynamics of the glass state for smal- ¢.. However,
for p<¢., there is the second relaxation step towards equi;
librium, which deals with the dynamics on scdlg. After
yet another reformulation of the equations of moti@ec.
VIIA), a scaling law for thew process—the superposition
principle—will be derived as leading-order asymptotic result
(Sec. VIIB). Then leading corrections to this law will be
discussed in Sec. VIIC.

A. The equations of motion for the & process
near the critical point

reduced packing fractions as functions of logyt or log;qw, respectively, is done by a
- oo ) shift of the curves parallel to the abscissabj,oglot’
Po(t)=Pq(t) + e(1—F )" Wy(1)+O(e?) . (59 In Sec. IV, a-relaxation scalesr =1lwmaxd) and 7
The expansion of the mode-coupling functional, E2), is Eave been introduced. I.'?t us defme in a~5|m|Iar manner
given by the following coefficients: ®maxd)_as the peak position of the, versuse graph and
_ - _ - T4 by (IJq("(;)—fC/Z For our model, one finds fog;:
Co()=Fg(@(1)) , Cy(t)=aF(P(1))/de , wmm 0.4747,=117 and for Q0 @map=2.1675
(568 =0.205. Within the range of validity of the leading-order
~ ~— result(59), one gets
Cqu) =[dF (@D of J(1-FH)? . (56b)
Because ofd,(f—0)=f¢, these functions have as initial Tq=lo/Omal) ; Tq=loTq (60)

values the number€;,C.° and Cg, respectively, which » o ) .
have been mtroduced |n Eq). Spemahzmg Eq(19) to The superposition principle explains that there is only one

€=0, one finds the nonlinear equation of motion for thea scalet ;. The scales q or 74 quantify the slowing down

leading-order contnbunoﬁ) [68] of the dynam|cs upon freezmg These scales depend on the
_ _ correlator under discussion. But different scales differ only
q>q(§)/[1+“z‘q>q(z)]ch(z) . (57) by e-independent prefactorsdy,,,(q) and 7y, respectively.

In Fig. 7(a), the asymptotic power law for, is shown to
For the leading correctlorP the linear equation of motion describe the solution well far=5. The corresponding state-
is obtained ment is demonstrated in Figs. (BBand 13b) for wmax-
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FIG. 17. Correlators®, for the reduced packing fractions ibilities for th its f ) ¢ .
e=—10" n=13579 as function of the rescaled time FIG. 18. Susceptibilities for the results from Fig. 17 as functions

T=t/t, with t, given by Eq.(53) (solid lines. The thick solid lines ~ ©f the rescaled frequendy=ot ;.

are thea-relaxation master function® obtained from Eq(29).

. L I e
The dashed lines are the short-time parts of the leading-plus-next!'Cr€asing® the rescaled susceptibility functions,(@) or
to-leading approximation for the correlatorsPq(T) +hyB,ot . X q(w) increase above the master spectra or decrease below

the plateau %fg, respectively, as is demonstrated in Fig.

It was discussed in Sec. V C that theprocess deals with 18. These deV|?t|0ns from the second scaling laws for times
short on scales,, or frequencies large on scale 1/ respec-

a crossover from the von Schweidler shorexpansion to > . 2
exponential decay at long times. As a result the stretehed tively, are caused by the correction teafl— f )W, in Eq.
peak of the susceptibility spectrum comes about due to th€d5). The equation of motiort58) can be solved for smatl
crossover from a regular low spectrum to a von Sch- by expansions in powers 6f, following the same procedure
weidler high@ decay. Thea-relaxation timesr, or 7, ex- ~ as explained in the preceding sections. One gets

hibit characteristic variations as a function of the wave vec-

tor g and so do the stretching properties, as has been ~ ~ b ~0

discussed comprehensively for the hard-sphere system in Dq(t)=Pg(t) +heByot >+ 0O(t7,0) . (61)
Ref.[59].

The critical amplitudeh, is the one from the factoriza-
C. The leading correction to the second scaling law tion theorem(37) and coefficientB; occured in Eq.(42)

It was shown in Sec. VIC that the leading corrections todUrng the discussion of the first scaling-law results. The
the first scaling-law results are of relative ordef*2. If we dashed .I|nes for. shpn~|n~ Fig. 17 exhibit the sum of
stick to the same degree of accuracy for the description of€ léading contributionby(t) and the second term of Eq.
the a process we can use EG9). There are no corrections (61) as dashed lines for shott Fig. 18 shows the corre-
to the second scaling-law results of ordefY2. For fixedT, §pond|ng results for th_e susceptlbllltles. It has been explained
the corrections to the second scaling law are only of ordein Sec. lll that the ratichy/f g is smaller for wave vectors
|e|. This observation explains, why the implications of Eq.near the structure-factor-peak position than époff this
(59) still hold for such largee, where the first scaling-law Vvalue[compare Fig. @)]. This observation explains why the
results are no longer applicable. For example, one infer§econd scaling law works better fqi than forg,.
from Fig. 18 that the second scaling-law results describe a L&t us consider the resull) for small t. Then, the
major part of thea process fore=—10 %2 andq=gq;. On g_OQ % term can be neglected and the scaling function
the other hand, it follows from Fig. 1B) that the first scaling  ®q4(t) can be replaced by the von Schweidler law, i.e., by the
law is only of limited use, if at all, to describe the spectra ofleading terms in Eq(303
the B process fore=—10 3,

With decreasing, the functionsb(t) increase above the C —
maximumf ¢ of ®() as is shown in Fig. 17. Similarly, with Qy(t)=f g=he{t’=Biot ™7} . (629
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close to the plateau corresponds to the region in the vicinity
If one remembers the definitions of in Eq. (53) and of of the minimum or the knee for liquid or glass curves, re-
c,.t, in Eq (40), one can rewrite the result as spectively. Again, it is important for an experimental test of
B b “b the theory to demonstrate that the range of validity shrinks
(I’q(t)_fq_hqco{Bt —B./(t°B)} (62b) with increasing distance from the glass transitisee, e.g.,
wheret=t/t,. It was known from a previous worl68] that Refs.[11,31,33). For the wave-vector band and the packing
the leading expansion of thea correlator for fractions s_pecmed above, scallng_holds for more thgn three
T<1,d>q(t)~f g_hq’i[‘b' agrees with the leading expansion of decades in the frequency domain. The factorization of the

the first scaling law f0|f>1,(1>q(t)~f E—hchBib- The for- spectra implies, for example, that the position of the minima

mulas (62) extend these findings so that the next—to—leadingOf various susceptibility spectra should coincide. This prop-

terms are included. The correction of orderto the second &Y Was verified fo.r a set of four represe_ntative wave vectors
scaling law for times short on scaté, is given by the last by_ n_eutron—scatterlng studies for the mixed s_al_t__C:KZ\l].
term in Eqg.(62a. And this agrees with the next-to-leading Within MF:T’ one cap show that the S.'uscept'b”'.“ﬁ(z)
term for times long on scale, , as given by the expansion of for all varllablt_esA which couple to dens!ty fluctuations opey
the first scaling law in Eq(42). the factorization theorem as asymptotic 1887]. Indeed it
was shown[39] that the susceptibility spectrga(w) ob-
tained by depolarized light scattering for CKN, exhibit
minima in agreement with the ones reported for neutron scat-
In this paper we presented a comprehensive discussion &gring. Apparently for the cited system and the mentioned
the - and B-scaling laws, which are two of the central pre- probing variables, the preasymptotic corrections are rather
dictions of the MCT. As a result of a bifurcation analysis thesmall. Minima positions for Salol as obtained by light scat-
factorization property can be derived: In tigarelaxation tering have been compared with those obtained by neutron
region the time dependence of the correlation functions iscattering in Ref[33]. In that case, the results were similar
given by a single functiorG which obeys a one-parameter to what was discussed for Fig. (8 for large temperature
scaling law, Eqs(39) and(40). The wave-vector dependence T the minimum positions differed but they converged to the
enters only via the critical form factof§ and the critical ~Same frequencies upon lowerifigtowards the critical value
amplitudeh,. In Figs. 11 and 12 the rescaled correlators andlc-_ _
susceptibility spectra of the hard-sphere model are compared Figures 11-13 demonstrate that the correlators deviate
with the master function. The diamonds mark the time andlifferently from the master curves, depending on the wave
frequency windows were the scaled curves are well devector, and therefore the window of validity of the
scribed by the asymptotic formulas. Let us emphasize tha8-scaling law isq dependent. This effect can be seen even
Figs. 11 and 12 present a hard test of the asymptotic lawdgnore dramatically for the susceptibilities shown in Fig(&6
because all the parameters that enter RRi§—(40), excepta for e=—0.001: The minimum positions and the slopes agree
single time scale,, have been calculated not fitted. Thesereasonably well forw<wpmi,. FOr 0>y, the spectrum
figures can be easily interpreted if one considers that thér g, follows the master spectrum for more than a decade
B-scaling law is the leading order of an asymptotic expanfrequency increase. However, the spectrum dgr differs
sion about the critical plateafi§ in the vicinity of a glass ~ Strongly from the leading result fab>wp;,; it 00ks as if
transition. This implies that for a system near a glass transithere was a critical spectrum specified by an effective expo-
tion singularity the scaled curves should collapse onto th&@€ntaers, which is considerably smaller than the valae
master function as soon as they come closd o If the ~ For e=—0.01, the susceptibility 7(w) in Fig. 16b) does
system is moved towards the glass transition the windowtot exhibit a minimum at all, even though there is a well
where the correlators remain near the plateau expands—aréigvelopedx peak. The anomaly noticed fer= —0.001 can
so does the range of validity of the factorization theorem andhus be understood as precursor for the disappearance of the
of the scaling laws. The verification of this behavior is anminimum for large separations from the critical point. Notice
essential part of a proper MCT analysis of experimental dat#hat the minimum shape for the susceptibilty(w) can still
(see, e.g., Ref$19,20). be described well by the scaling-law master spectrum for
The factorization theorem does not hold uniformly with e=—0.01.
respect to wave-vector variations. For a given wave-vector The need to broaden our understanding of the deviations
modulusqg and a given number of time decades, there is drom the 8-scaling law made it appear worthwhile to push
positive €, So that Eqs(37)—(40) hold for all reduced pack- the asymptotic expansion to the next-to-leading order. We
ing fractionse=(o— ¢.)/ ¢, With |€|<e,. However, fore ~ could demonstrate that the leading corrections extend the
#0 no matter how smalle| may be, one can find g so  range of validity of the first-order approximation at and off
small, that theg-scaling law becomes invalid, because it is the critical point substantially and can therefore serve as an
tarnished by the hydrodynamic singularities. For our hardexplanation for the deviations mentioned abgsee Figs. 3,
sphere colloid model we found that tiferelaxation scaling 8, 9, 15, and 16 They can explain, in particular, the shift
laws describe the dynamics for a wave-vector bandFig. 16@]and the disappearanf€ig. 16b)] of the suscep-
0o=g=qz and|e|<10"* in a time window of more than tibility minimum.
five orders of magnitude. The appearance of wave-vector dependent amplitudes
The arguments given above for the correlators can be ag<, andKj in the next-to-leading-order terms, E{S2), im-
plied to the spectra in Fig. 12, if one notices that the regiorplies that the corrections spoil the factorization property, i.e.,

VIIl. SUMMARY AND CONCLUSIONS
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the deviations from the scaling law results grelependent. have died out. The derived analytical formulas for the solu-
Close to the glass transition singularity the dominant effect¢ion of the MCT equations of motion deal with structural
are the short-time corrections to the critical law and the long+elaxation only, which, except for the time scdlg is en-
time corrections to the von Schweidler law, which were dis-tirely determined by the mode-coupling functional, EB).
cussed in Secs. VA, VB. This knowledge has also been usedowever, there may be interesting slow dynamical processes
to explain why the window of validity of thg-scaling law is ~ due to_the transient, which can interfere with the struptural
much smaller in the frequency domain than in the time doJ€laxation. Thereby, they can also cause preasymptotic cor-
main. This effect, noticed previously by Kob and Andersen'€ctions to t_he blfu_rcatlon dynamics. But these corrections
in connection with a MCT analysis of computer simulation &€ Not considered in our paper. Studying the crossover from
data(see Fig. 14 in Ref[72]), depends only on the value of slow transient dynamics to the structural relaxation may be

the exponent paramet&r For our model the windows differ important for an "!terp.feta“‘)'? .Of data.or of MCT solut.|ons.
: The hydrodynamic singularities which were mentioned
by nearly two orders of magnitude.

. . above, are obvious examples for such preasymptotic correc-
Further, we could prove that the long-time corrections ar P P ymp

d with the sh : i 5 d Sions. Let us also mention two less obvious ones. First, an
connected with the short-time correctloqus..( 7 an dditional time fractal, expected for hard-sphere systems,
(30)]. As a consequence, the numbers labeling the scal

Rt k ad to be incorporated to interpret within the MCT formal-
correlators in Fig. '11 are in the same order. from' top to bo"jsm the shear dynamics of a colloidal suspeng@H. Sec-
tom on the short-time side as on the long-time side. Experigng, conventional liquids exhibit phononlike excitations
ments on hard-sphere colloids are consistent with this COT51,52), whose bare dispersion law enters the MCT equation
clusion(see Fig. 14 in Ref.20]). Suppose corrections to the of motion, Eq.(1), asQ,. MCT predicts that such excita-
scaling law have been measured for some correlator for shoffons are also present in the gld86,69. These oscillations
and long times. With Eqg27) and(30) one can then deter- may mask, for example, the critical decay, as was discussed
mine the numbetk(a)— «(—b). If one now measures the in Ref.[14].
short-time corrections for some other correlator, $gy one The concept of spontaneous arrest of fluctuations in a dis-
can determind&,+ «(a). Then one know¥,+ «(—b) and  ordered system is an idealization. The singular transition to
thereby the long-time corrections. Consequently, our resultan ideal glass state, as obtained within the idealized MCT,
provide a quantitative prediction which holds for every MCT results from the assumption, that fluctuating forces couple to
model. Analogous results hold for the susceptibility spectradensity-fluctuation pairs whose motion can be treated by a
in Fig. 12. factorization ansatz. If one takes into account also coupling
The corrections depend on the details of the modeio currents, one obtains an extended MCT, where ergodicity
coupling functional of the investigated system via the paramis restored for allT andn so that correlation functions al-
etersKq, Kq, ¢, & and« just as the leading-order results ways relax to zer¢74,75. The current modes play the role
depend on the particular model vfgg, hg, andX. This is of phonons and the indicated relaxation mechanism approxi-
since the cage effect, which is the common origin for themately describes transport via phonon-assisted hopping. As a
bifurcation scenario predicted by the MCT, depends on théesult, the bifurcation singularity is bypassed and the singular
short-distance interactions between the atoms or molecule§fansition is replaced by a continuous crossover. There still is
Nevertheless, we were able to explain the general tendenci@sB regime, where the factorization theorg8v) describes
for variations withq displayed byf§, hy, andKg, and the dynamics in leading order. But the funct@@t) now is
thereby reach a qualitative understanding of the results foo be calculated from a two-parameter scaling [&8,76.
the hard-sphere model. The theory can be trivially extendedhis extended3-relaxation theory has been usg82,77,7§
to one dealing with mixture§68], and one can obviously for data interpretation with the intention to explain devia-
generalize the formulas for the leading corrections in theions from the scaling laws of the idealized MCT. The
same way as it has been done in the case of the leading-ord@yoided singularity of the extended MCT does not anymore
results[73]. It would be desirable to carry out an explicit Separate liquid states from ideal glass states, but still is the
discussion of the formulas for representative mixtures in ororigin of the stretched dynamics and the strong density or
der to see whether a qualitative understanding of mixturdemperature dependence of the time scales. The extended
results can be achieved as well. B-scaling law explains the crossover from the dynamics typi-
The corrections to the-scaling law cannot be calculated cal for disordered solid, i.e., thermally activated processes, to
in the same manner as the corrections to fhscaling law. ~ dynamics characteristic for a liquid, i.e., cage and backflow
We could only derive analytic formulas for the short-time €ffects. At present, it is unclear whether our methods can
corrections, which are in fact identical to the short-time cor-2/s0 be applied to derive, within the extended MCT, preas-
rections to the von Schweidler law of th@scaling theory. ymptotic correction formulas for the mentioned two-
Despite these difficulties a general result can be found: Thearameter scaling law.
Ieading-orde_zr corrections te scaling are qf higher or.der in ACKNOWLEDGMENTS
the separation parameter than the leading corrections to
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